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1 Introduction

A long-standing challenge in macroeconomics is accounting for labor market dynamics over

the business cycle. This challenge is particularly acute in the seminal model of equilibrium

unemployment due to Pissarides (1985) which, given related contributions by Diamond

(1982) and Mortensen (1982), we hereafter refer to as the DMP framework. When applied

to business cycles analysis through the introduction of stochastic shocks to technology, the

model features two primary shortcomings.

First, as discussed in Andolfatto (1996), Shimer (2005a), Hall (2005), and Costain and

Reiter (2008), the model fails to generate sufficient volatility of unemployment relative to

that of labor productivity, in comparison to postwar U.S. data. This discrepancy indicates

that the textbook DMP model embodies weak amplification of technology shocks into un-

employment fluctuations, and has been referred to as the unemployment volatility puzzle in

the literature.1 The second shortcoming relates to the correlation between unemployment

and labor productivity. In U.S. data, these two variables are only mildly negatively cor-

related, whereas in the model, the correlation is near minus one. We refer to this as the

unemployment-productivity correlation puzzle. Mortensen and Nagypál (2007) argue that

this discrepancy points to the omission of an important driving force in the cyclical analysis

of the DMP framework.

Within this context, in Sections 2 and 3 we study a very simple search-and-matching

model of the labor market that addresses both shortcomings. As in much of the literature,

our model retains an important relationship between technological change and the business

cycle. However, we depart by focusing on technological learning-by-doing : the notion that

it takes workers time using a technology before reaching their full productive potential with

it. Indeed, the idea that technology is subject to a learning process is well documented.2

The novel aspect of our framework is to model the nature of technology arrival to be

stochastic in terms of its ease of learning-by-doing. That is, innovations are not uniform

in the amount of learning time required for workers to become fully productive.3 We

embed this idea in a simple search-and-matching framework where workers have the ability

1Versions of the DMP framework where fluctuations are driven by demand shocks can naturally generate
large unemployment fluctuations without any changes in productivity. See, for instance, Diamond (1982)
and Kaplan and Menzio (2013).

2The literature documenting technological learning-by-doing has a long history in management and eco-
nomics. See Wright (1936) for an early study of learning-by-doing in airplane manufacturing. For recent
examples, see Argote and Epple (1990), Irwin and Klenow (1994), and the references therein.

3Again, the literature documenting variation in learning rates for new technologies is too vast to summa-
rize completely; see, for instance, Argote and Epple (1990) and Balasubramanian and Lieberman (2010).
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to increase their proficiency through learning-by-doing. Periods in which technologies are

easier to learn or more “user-friendly” imply an acceleration in the rate of technological

learning, resulting in an increase in the rate of aggregate labor productivity growth. The

arrival of technologies that are harder to learn generate a period of falling productivity

growth.

We then study the quantitative predictions of our model in Section 4, where we show

that it generates much greater volatility of unemployment relative to labor productivity, in

comparison to the standard DMP framework. This is due to the fact that the volatility of

the job finding rate, relative to that of labor productivity, is very close to that observed in

the U.S. data. Moreover, the model delivers a correlation of unemployment and produc-

tivity that is much smaller (in absolute value) than one, and indeed, is very close to that

observed in the data. To understand these results note that in the search-and-matching

framework, firms create job vacancies in expectation of future profit flows when matched

with a worker. In our model, potential profit gains that are due to learning-by-doing con-

stitute an important component of this profit flow. Hence, shocks to the ease of learning

generate pronounced fluctuations in expected future profit. This in turn generates fluctua-

tions in job creation and unemployment. However, these shocks have only an indirect effect

on aggregate productivity as workers gain technological proficiency. This enables the model

to address the unemployment volatility puzzle. Furthermore, shocks to the learning rate

of technology naturally break the tight contemporaneous correlation between unemploy-

ment and productivity, thereby addressing the correlation puzzle. To summarize, learning

rate shocks generate an immediate response of job creation and unemployment; but given

that the learning process takes time, the impact on labor productivity is persistent and

cumulative.

In this respect, our analysis is related to the recent literature on “news shocks.” Specif-

ically, in Subsection 4.3 we relate our findings to Beaudry and Portier (2006) who find that

a substantial fraction of business cycle variation in U.S. data can be attributed to shocks

to long-run TFP that: (i) have immediate effects on measures such as consumption, em-

ployment, and stock market value; but (ii) have effectively no effect on TFP upon impact;

instead the effect on productivity is persistent, observed over a horizon of at least 8 to 10

quarters. Beaudry and Portier refer to these as “news shocks” since they signal changes in

future productivity, and find that such shocks account for at least half of the variation in

hours worked at business cycle frequencies.4

4See also Beaudry and Lucke (2010) and Schmitt-Grohe and Uribe (2012) who find similar results.
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In our model, shocks to the learning rate generate dynamic responses in unemployment,

productivity and stock market value that conform with the responses to empirically identi-

fied news shocks. But importantly, our shock is not a news shock as modeled in the recent

literature—that is, as signals of conventional technology shocks that are to arrive in the

future.5 Indeed, we show that conventionally modeled news shocks do not resolve either of

the two shortcomings in the DMP framework. In contrast, (positive) shocks to the learning

rate represent the current arrival of innovations that are easier to implement; nonetheless,

the process of learning-by-doing must still be undertaken. Naturally, and precisely because

the dynamics of our model resemble those of empirically identified news shocks, unemploy-

ment in the model is bound to lead labor productivity, which suggests that other shocks

must be important to explain why labor productivity leads unemployment by about two

quarters in U.S. data.

At its core, our model emphasizes the idea that workers gain technological proficiency

while on the job, and that the rate at which this happens varies over the business cycle.

Hence, our model puts emphasis on the return to labor market experience and its cyclical

properties. In Subsection 4.4, we relate our finding with those in French et al. (2006) who

provide evidence for the procyclicality of the return to experience.

Our work is also related to a growing body of research studying the cyclical implications

of the DMP framework. Most of this work addresses the unemployment volatility puzzle.6

By maintaining the assumption of a technology shock-driven cycle, these papers do not

make progress on the unemployment-productivity correlation puzzle.7 By focusing on an

alternative interpretation of technological change over the cycle—shocks to the ease of

learning—we show that the DMP framework is able to generate substantial volatility of

unemployment relative to productivity, and to deliver a muted correlation between the two

variables.

5See, for instance, Beaudry and Portier (2007), Jaimovich and Rebelo (2009), and den Haan and
Kaltenbrunner (2009). See also Comin et al. (2009) who study a model in which economic activity de-
voted to technology adoption varies in response to the stochastic arrival rate of “frontier” technologies.

6The literature is too vast to provide a complete summary; see, for instance, Shimer (2004), Hall (2005),
Hall and Milgrom (2008), Pries (2008), Gertler and Trigari (2009), and Menzio and Shi (2011). Hagedorn
and Manovskii (2008) find that, for specific calibrations, the DMP model does not suffer from a volatility
puzzle. For discussion, see Hornstein et al. (2005, 2007), Mortensen and Nagypál (2007), Reiter (2007),
Costain and Reiter (2008), van Rens et al. (2008), Pissarides (2009), Eyigungor (2010), and Brügemann and
Moscarini (2010).

7In the RBC literature, a similar puzzle exists regarding the correlation between hours worked and the
real wage. Early papers addressed this by introducing shocks to labor supply (see, for example, Benhabib
et al. (1991) and Christiano and Eichenbaum (1992)); unfortunately, empirical evidence for the relevance of
these shocks in accounting for postwar business cycles is limited. The only paper in the search framework
to address this puzzle is Hagedorn and Manovskii (2010), who follow Benhabib et al. (1991) by introducing
home production/preference shocks to the DMP model.
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2 Economic Environment

We study a search-and-matching model of the labor market. The matching process between

unemployed workers and vacancy posting firms is subject to a search friction. The ratio

of vacancies to unemployed determines the economy’s match probabilities. Workers are

heterogeneous in their proficiency with production technology. For simplicity, we assume

that there are a finite number, N ≥ 2, of proficiency levels that a worker can progress

through over her lifetime. The worker’s proficiency is reflected in the output in a worker-

firm match. The process of improving one’s proficiency with technology takes time and,

crucially, occurs only while employed as emphasized in the learning-by-doing literature.

Within this environment, the novel aspect of our analysis is to consider how fluctuations in

the ease of learning drive the business cycle.

To isolate the role of technological learning-by-doing, we make the following assumptions

on innovations to the production technology. Innovations arrive in each and every period.

The cost of adopting the innovation is sufficiently small that, upon arrival, all worker-

firm matches find it advantageous to adopt. Each innovation differs from the previous

period’s along two dimensions. First, the innovation increases the efficiency (and, hence,

productivity when matched) of all workers by a growth factor g. This efficiency gain affects

all matched workers, irrespective of their profiency level. For simplicity, we normalize g = 0,

and focus on a model where productivity is stationary in the long-run (has no growth trend).

Secondly, innovations do not alter the proficiency level of workers per se; however,

innovations differ in the rate at which workers gain technological proficiency and advance

through the proficiency “ladder.” This is the novel stochastic element in our analysis.

For the sake of expositional simplicity in this section, we set N = 2 so that a worker’s

proficiency is either low or high. As such, becoming fully proficient with technology is

represented as a one-time level shift: a jump in the worker’s proficiency from low to high.8

As a simple example, consider the case of a worker in an office setting, where the current

mode of production requires the use of personal computing technology. Full proficiency with

the technology requires a complete understanding how to use the PC’s operating system.

For workers without full proficiency, attaining this level of understanding requires time

using the PC while employed; this is represented by a hazard rate, λ ∈ (0, 1], which we refer

to as the learning rate. An employed worker currently without full proficiency in the PC

8When we explore the quantitative predictions of the model in Section 4, we consider a more realistic
environment with N > 2 so that becoming fully proficient is a more gradual process for the worker. See also
the discussion in Section 2.6.
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technology produces output fL. With probability λ she “figures out” the technology; in the

next period, she produces fH > fL. With probability (1− λ) she remains at less than full

proficiency, producing fL.

Our analysis focuses on shocks to the learning rate, λ—shocks to the ease at which

technology can be learned. Returning to our example, consider a PC operating system

such as Microsoft Windows. Between periods t− 1 and t, the innovation that arrives is an

update from Windows 1.1 to (say, a faster version) Windows 1.2. This innovation increases

the efficiency of all workers by a factor g.9 However, versions 1.1 and 1.2 are identical

in use and the ease of learning, so that the learning rate remains at λ. In period t + 1,

the innovation that arrives is an update from Windows 1.2 to Windows 2.0. Again, this

update increases efficiency by g. However, because the new version is more “user-friendly,”

it increases the rate at which workers become fully proficient with the technology. In this

case, innovation would represent a positive shock to the learning rate, λ′ > λ.

2.1 Market Tightness

A worker’s proficiency or type is perfectly observable. Accordingly, a firm can maintain a

vacancy for workers of either type, i ∈ {L,H}. The cost of maintaining a vacancy for either

type is κ. There is free entry into vacancy posting on the part of firms. We define market

tightness in market i, θi, as the ratio of the number of vacancies maintained by firms to

the number of workers looking for jobs of type i. While the tightness of each market is an

equilibrium object, they are taken parametrically by firms and workers.

We denote the probability that a worker will meet a vacant job in market i by p(θi),

where p : R+ → [0, 1] is a strictly increasing function with p(0) = 0. Similarly, we let

q(θi) denote the probability that a firm with a vacancy meets a worker in market i, where

q : R+ → [0, 1] is a strictly decreasing function with q(θ)→ 1 as θ → 0, and q(θ) = p(θ)/θ.

Allowing for market segmentation across low and high type workers is useful for a number

of reasons. As will become clear, it affords analytical and computational tractability, as

equilibrium is block recursive in the sense that agents’ value functions and decision rules

are independent of the distribution of workers across types and employment status (see

Shi (2009) and Menzio and Shi (2010)).10 In addition, it makes the economic mechanism

transparent, highlighting the role of learning rate shocks on the incentive for job creation.

9Again, recall that we normalize g = 0 for simplicity.
10If we did not allow for segmented markets, the qualitative implications of technological learning would

be preserved. However, the computation of equilibrium with aggregate uncertainty would be extraneously
burdensome, because of the need to track the distribution of types in unemployment.
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2.2 Contractual Arrangement and Timing

We specify the compensation in a match as being determined via Nash bargaining with fixed

bargaining weights, as in Pissarides (1985). As such, our results do not rely on mechanisms

that change the relative bargaining power of workers and firms over the cycle.11

When an unemployed worker and a firm match, they begin producing output in the

following period. In all periods that a worker and firm are matched, the compensation

is bargained with complete knowledge of the worker’s proficiency. We let ωi denote the

compensation of a type i worker.

2.3 Technological Learning in Worker-Firm Matches

We define UL as the value of being unemployed for a low proficiency worker:

UL = z + βE
[
p(θL)W ′L + (1− p(θL))U ′L

]
, (1)

where expectations are taken over tomorrow’s learning rate. Here, z is the flow value of

unemployment, WL is the worker’s value of being employed in a match, and primes (′)

denote variables one period in the future. An unemployed worker transits to employment

in the following period with probability p(θL); we refer to this as the job finding probability.

The value of being employed for a low proficiency worker is:

WL = ωL + βE
[
λ
[
(1− δ)W ′H + δU ′H

]
+ (1− λ)

[
(1− δ)W ′L + δU ′L

] ]
. (2)

During the period, the employed worker becomes proficient with probability λ, which is

stochastic. At the end of the period, the match is separated with (exogenous and constant)

probability δ ∈ (0, 1]. In the case where the worker figures out the technology but is

separated from her match, she enters the next period with value UH . That is, the proficiency

that the worker acquires on-the-job is retained when unemployed and can be applied to

future matches. In this sense, the technology being learned is not firm- or match-specific.

Note also that learning happens only when a worker is matched. That is, since technological

proficiency is acquired though learning-by-doing, the worker cannot transit from type L to

H while unemployed.

There is a large number of firms that can potentially maintain vacancies, as long as they

pay the cost, κ. The value of maintaining a vacancy for low proficiency workers is:

VL = −κ+ βE

[
q(θL)J ′L + (1− q(θL)) max

j

(
V ′j , 0

)]
, (3)

11See, for instance, Hall and Milgrom (2008) and Gertler and Trigari (2009).
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where q(θL) denotes the firm’s job filling probability. The maximization within the expec-

tation term implies that firms who do not find a worker may choose to maintain a vacancy

in either market, or be inactive in the following period. The firm’s value of being matched

with a type L worker is:

JL = fL − ωL + βE
[
(1− δ)

[
λJ ′H + (1− λ)J ′L

]
+ δmax

j

(
V ′j , 0

) ]
. (4)

This value is composed of the contemporaneous profit—output minus the worker’s compen-

sation—plus the expected discounted value from next period on. This latter part (condi-

tional on the match surviving) consists of the value of being in a match of type H which

occurs with probability λ, or being in a type L match with complementary probability.

2.4 High Proficiency Workers

To close the model description, we present the value functions associated with high profi-

ciency workers:

UH = z + βE
[
p(θH)W ′H + (1− p(θH))U ′H

]
, (5)

WH = ωH + βE
[
(1− δ)W ′H + δU ′H

]
. (6)

A worker of type H transits from unemployment to employment with probability p(θH),

and transits from employment to unemployment with probability δ.

Again, a large number of inactive firms can potentially maintain vacancies for type H

workers. The value of maintaining such a vacancy is:

VH = −κ+ βE

[
q(θH)J ′H + (1− q(θH)) max

j

(
V ′j , 0

)]
. (7)

Finally, JH is simply the expected discounted value of flow profits:

JH = fH − ωH + βE
[
(1− δ)J ′H + δmax

j

(
V ′j , 0

) ]
. (8)

Note that the type H market is identical to the standard DMP model.

2.5 Defining Equilibrium

An equilibrium with Nash bargaining is a collection of value functions, VL, JL, VH , JH ,

UL,WL, UH ,WH , compensations, ωL, ωH , and tightness ratios, θL, θH , such that:
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1. Workers are optimizing. That is, workers that are matched prefer to remain matched

rather than be unemployed, WL > UL,WH > UH , and workers prefer to be of high

proficiency as opposed to low proficiency, WH > WL, UH > UL.

2. Firms are optimizing. That is, the value of maintaining a vacancy is equalized across

markets and is no less than the value of remaining idle, VL = VH ≡ V ≥ 0, and

firms that are matched must prefer to remain matched as opposed to maintaining a

vacancy, JL, JH > V .

3. Compensations solve the Nash bargaining problems:

ωi = arg max (Wi − Ui)τ (Ji − V )1−τ ,

for i ∈ {L,H}, where τ denotes the bargaining weight of workers.

4. The free entry condition is satisfied; that is, V = 0.

Nash bargaining prescribes a very simple relationship between the worker’s surplus,

Wi − Ui, and firm’s surplus, Ji, in a match. Let S denote the total surplus from a match:

Si = Wi + Ji − Ui, i ∈ {L,H}.

Under Nash bargaining, the worker and firm receive a constant, proportional share of the

total surplus, Wi − Ui = τSi and Ji = (1− τ)Si.

2.6 Discussion

The model has been kept simple for exposition. In particular, we have modeled only two

types of workers. Type L workers represent labor force members who have the potential to

upgrade their proficiency via learning-by-doing. Type H workers are those who no longer

have the ability to do so.

In our analysis, we focus attention on type L workers. This represents our presumption

that, in reality, most workers have the ability to increase their proficiency while on the

job. In this sense, the presence of type H workers represents an analytical device, allowing

us to specify a well-defined dynamic problem for type L workers, those who represent the

majority of labor force members in the economy.

However, our model naturally introduces a source of heterogeneity relative to the stan-

dard DMP model. That is, while the standard model features heterogeneity in the employ-

ment status of workers (of the same proficiency), those in our model are also distinguished
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by the scope of their upgrade potential. Given this, it is interesting to consider the impli-

cations of this heterogeneity in a richer framework. We do this by extending the model to

include N worker types, where N > 2. This is done in Section 4, where we explore the

quantitative properties of our model.

In our exposition, we have specified compensation as being determined by Nash bar-

gaining. However, our results do not rely on this assumption. For example, the model’s

implications are identical to a version with wage posting on the part of firms, as in the com-

petitive search framework; this is true when Hosios (1990)’s condition is met. Furthermore,

when the Hosios condition is met, the model’s equilibrium is efficient. We refer the reader

to Appendix B for details.

Note also that our model nests the standard DMP model in two cases. The first is

when there is no difference in productivity across worker types, i.e., fL = fH . In this

case, upgrading is meaningless, and our model collapses to the standard one. Alternatively,

when λ = 0 there is no scope for proficiency upgrading for type L workers. In this case,

the model features two unrelated labor markets, each of which behaves identically to the

standard DMP model.

Finally, we note that while workers have the potential for proficiency upgrading, they

face no chance of downgrading. Hence, our model would feature a degenerate distribution

of worker types in steady state, with all workers being of type H. To address this, we

introduce an exogenous probability of death: in each period, all workers (regardless of

employment status or proficiency) die with probability φ. These workers are “re-born” to

keep the measure of workers constant, in a manner to preserve a non-degenerate distribution;

we elaborate on this in Subection 4.1 where we discuss the calibration of our model with

N > 2 worker types. As such, the discount factor, β, represents a composite of a true

subjective discount factor and a survival probability, 1− φ.

3 Analytical Results

In this section, we provide analytical results characterizing some key properties of our model.

We begin by characterizing the model’s steady state equilibrium. We then discuss the key

differences between our model and the standard DMP model, and their implications for

business cycle fluctuations.
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3.1 Characterizing Steady State

Our analysis begins with a useful lemma.

Lemma 1 In any steady state equilibrium, if UL < UH , then θL < θH .

Proof. Subtracting the steady state value of being unemployed for type L, equation (1),

from that of type H, equation (5), we have

UH − UL =
1

1− β

[
βp(θH)(WH − UH)− βp(θL)(WL − UL)

]
.

Using the free entry condition VL = VH = 0 together with the value of maintaining a

vacancy for low, equation (3), and high proficiency workers, equation (7), it follows that

UH − UL =
τκ(θH − θL)

(1− τ)(1− β)
.

A number of results follow immediately from this lemma, collected in the following

corollary:

Corollary 1 If UL < UH , then it follows that p(θH) > p(θL), q(θH) < q(θL), JH > JL,

SH > SL, WH − UH > WL − UL, and WH > WL.

The next proposition establishes that the steady state value of unemployment is increasing

in type.

Proposition 1 In any steady state equilibrium, UL < UH .

Proof. The proof is by contradiction. Suppose UL > UH ; from Lemma 1, this implies that

θL > θH , so that q(θL) < q(θH). From the free entry condition, this implies JH < JL. From

Nash bargaining, this implies SH < SL. Total surplus is given by:

SH = fH + β
[
(1− δ)S′H + U ′H

]
− UH ,

SL = fL + β
[
(1− δ)

[
λS′H + (1− λ)S′L

]
+ λU ′H + (1− λ)U ′L

]
− UL.

Using the fact that S′i = Si and U ′i = Ui in steady state, and gathering terms:

[1− β(1− δ)(1− λ)](SL − SH) = fL − fH + [β(1− λ)− 1] (UL − UH). (9)
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Both terms on the LHS are positive (the first by construction, the second by assumption;

(fL − fH) < 0; [β(1− λ)− 1] < 0 and (UL −UH) > 0 by assumption; therefore, the RHS is

negative. This is a contradiction.

This result is important for a number of reasons. It ensures that in steady state equi-

librium, the assumptions implicit in the model exposition are verified. In particular, a high

proficiency unemployed worker would prefer to maintain her type, as opposed to reverting

to low proficiency (see Subsection 2.5). From Corollary 1, it also ensures that an employed

worker would prefer to be of high rather than low proficiency.

More importantly, it allows us to understand the incentives for job creation in our model

relative to the standard model. In steady state, the free entry condition of the standard

DMP model can be expressed as:

κ = q(θDMP )β(1− τ)SDMP ,

where the subscript DMP refers to the standard model. Hence, the number of vacancies

firms post per unemployed worker, θ, depends on the profit conditional on being matched,

β(1− τ)S, which is proportional to total surplus. Total surplus in the standard model can

be expressed as:

SDMP = f − z − τ̄κθDMP + β(1− δ)SDMP ,

where τ̄ ≡ τ/(1−τ). In words, the total surplus from a match consists of a contemporaneous

surplus plus its continuation value; the contemporaneous surplus is the output from the

match (f), net of the foregone flow value (z) and option value (τ̄κθDMP ) of unemployment.

In our model, the analogous free entry condition must hold in each market:

κ = q(θi)β(1− τ)Si, i ∈ {L,H}. (10)

Total surplus for type H matches is identical to the standard DMP model. This is not the

case for type L matches. In the market for workers with the possibility of learning:

SL = fL − z − τ̄κθL + β(1− δ)SL + λβ [(1− δ)(SH − SL) + (UH − UL)]︸ ︷︷ ︸
≡∆

. (11)

Relative to the standard model, the total surplus of a type L match involves the additional

term, ∆, which we refer to as the value of learning. This reflects a capital gain due to the

fact that technological learning may occur when a worker and firm are matched.

Conditional on learning, there is an upgrade to a high productivity match in the next

period. Hence, the total surplus includes the change in the worker’s and firm’s values,
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weighted by β and λ. With probability (1− δ) the match survives, so that learning reflects

a change in the matched value of both the worker and the firm. With probability δ the

match is separated, and the learning is reflected only in a change in the unemployed worker’s

value. Hence:

∆ = λβ [(1− δ)(WH −WL + JH − JL) + δ(UH − UL)]

= λβ [(1− δ)(SH − SL) + (UH − UL)] .

Moreover, given Proposition 1 and Corollary 1, UH −UL > 0 and SH −SL > 0, so that the

value of learning is positive, ∆ > 0.

3.2 Comparative Statics

In this subsection, we provide comparative statics results for the model’s steady state. These

are useful in providing insight into the business cycle properties of our model.

The equations governing equilibrium job creation—more specifically, market tightness—

are the free entry conditions. From (10), it is clear that the response of market tightness to a

shock depends on the response of total surplus. Intuitively, a shock that causes total surplus

to rise implies a rise in the flow of profits to a matched firm. Since there is free entry, firms

respond by creating more vacancies per unemployed worker. Job creation occurs until the

point where the rise in profit is offset by the fall in the probability that any given vacancy

is filled.

The next proposition relates to the model’s response to changes in the learning rate.

Consider total surplus in type L matches with the possibility of learning. From equa-

tion (11), it is clear that the effect of a change in λ on total surplus operates through its

influence on the value of learning, ∆. We first establish that SL is increasing in the learning

rate.

Proposition 2 A rise (fall) in λ causes SL to rise (fall).

The proof is provided in the Appendix. The intuition is straightforward. An increase in

the learning rate increases the value of learning, ∆ > 0, which is positive (see the previous

subsection). As the probability that the match upgrades from low to high proficiency

increases, the expected profit rises as well; that is, the “upside risk” of the match has

improved. This implies an increase in total surplus. Via free entry, this causes a rise in

θL: job creation of matches with the possibility of upgrading rises. This steady state result
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extends to the stochastic environment that we study in Section 4: a positive shock to λ

causes θL and job creation to rise, and vice-versa.

It is also straightforward to see that total surplus in high productivity matches is un-

affected by shocks to the learning rate. As discussed in Section 2, the H-type market is

simply a standard DMP model, and independent of the type L market. Hence, job creation

in this market is unresponsive to shocks to the learning rate, λ.

4 Numerical Results

In this section, we provide numerical results for our model. Subsection 4.1 discusses the

calibration of the model. In subsections 4.2 and 4.3.1, we present business cycle statistics

for the postwar U.S. economy and demonstrate that the standard DMP model does poorly

in replicating them. Subsection 4.3.2 presents the results for our model, where we illustrate

why our model improves upon the standard DMP model in terms of the volatility of un-

employment relative to that of productivity, as well as the correlation between these two

variables.

4.1 Calibration

As discussed in Section 2.6, in our numerical analysis we consider the implications of the

model with richer heterogeneity, i.e. with N > 2 proficiency levels or types. In terms of

notation, let fi denote the level of output produced in a match between a firm and worker of

type i, where i = 1, . . . , N . For simplicity, we assume that a worker increases her proficiency

by one level at a time, with λ still denoting the probability, while matched, that a worker

of type i < N upgrades to type i+ 1. All other aspects of the model remain unchanged.

The characterization of the highest proficiency, type N , market is identical to that of

the high proficiency market summarized by the value functions (5)–(8) (obviously, with the

H-subscripts replaced by N ’s). The value functions for all other workers and firms with the

potential for technological learning (types i = 1, . . . , N − 1) are given by:

Ui = z + βE
[
p(θi)W

′
i + (1− p(θi))U ′i

]
, (12)

Wi = ωi + βE
[
λ
[
(1− δ)W ′i+1 + δU ′i+1

]
+ (1− λ)

[
(1− δ)W ′i + δU ′i

] ]
, (13)

Vi = −k + βE
[
q(θi)J

′
i

]
, (14)

Ji = fi − ωi + βE
[
(1− δ)

[
λJ ′i+1 + (1− λ)J ′i

] ]
. (15)
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Many of our model features are standard to the DMP literature, so our calibration

strategy is to maintain comparability wherever possible. As in Hagedorn and Manovskii

(2008), the model is calibrated to a weekly frequency. As such, the discount factor is set to

β = 0.999 to accord with an annual risk free rate of 5%.

We assume that the matching function in each market is Cobb-Douglas, so that:

µ(θ) = θq(θ) = θα.

We specify α = 0.4; this is near the mid point of the range of empirical estimates of the

aggregate matching function found in the data.12 It is important to note, however, that

while these estimates are derived to match moments in the aggregate data, we impose this

common value of α across each of our (type-specific) matching markets.

For comparability with previous work, we specify the parameter in the Nash bargaining

problem as τ = 1− α. As in the standard DMP model, this implies that the Hosios (1990)

condition is met and the equilibrium is efficient (see the Appendix for details).

The vacancy cost, κ, pins down the aggregate job finding rate, p(θ). We target a weekly

job finding rate of p(θ) = 0.139, which corresponds with a monthly rate of 45%, as in Shimer

(2005a).13 Given this aggregate job finding rate, we set δ = 0.0081 to correspond with a

steady state unemployment rate of 5.5%.

Following Hall and Milgrom (2008), Mortensen and Nagypál (2007), and Pissarides

(2009), we specify z, the flow value of unemployment, to equal 73% of the average return

to market work. The interpretation is that z is composed of two components: a value of

leisure or home production, and a value associated with unemployment benefits. As in

their work, the return to leisure/home production is equated to 43% of the average return

to market work. Given this target, the model’s Nash bargained compensation, and the

steady state distribution of worker types, we set z = 0.444. This implies an unemployment

benefit replacement rate ranging from roughly 40% for type 1 workers, and 20% for type N

workers; this accords with the range of replacement rates reported by Hall and Milgrom

(2008).

Relative to the standard DMP model, our model adds a number of new parameters:

{fi}Ni=1, λ, and the process of ‘death and rebirth’. We normalize fN = 1. For the remaining

12See, for instance, Petrongolo and Pissarides (2001), Shimer (2005a), Mortensen and Nagypál (2007),
and Brügemann (2008).

13As discussed in Shimer (2005a), note that the exact value of κ is irrelevant. That is, by introducing a
multiplicative constant, ξ, to the matching function, κ can be scaled by a factor of x and ξ by a factor of
xα, leaving the job finding rate unchanged.
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parameters we follow the calibration strategy of Ljungqvist and Sargent (1998, 2004) and

den Haan et al. (2005).14 Specifically, we choose these parameters to match observations

from the empirical life-cycle earnings profile estimated by Murphy and Welch (1990) and

others. First, in the data, the maximal lifetime wage gain for a typical worker represents

an approximate doubling of earnings. Second, in the data, this doubling occurs after the

typical worker has accumulated approximately 25 years of experience. Given this, we choose

N = 25 and set the difference between the lowest and highest productivity at fN/f1 = 2.

For simplicity, we follow Ljungqvist and Sargent (1998) and specify all productivity levels

to be equally spaced, so that f1 = 0.5, f2 = 0.5208, . . ., fN−1 = 0.9792, and fN = 1. We

set λ = 0.0185, so that it takes the average worker 54 weeks (or approximately one year) to

realize a proficiency upgrade; in this way, it takes the average worker 25 years to progress

from the lowest to highest proficiency level.

Third, in the data, the average worker’s earnings cease to increase from the age of

approximately 50 years old onward. In the model, the value of φ determines the proportion

of the workforce that no longer has the potential for proficiency upgrading. As such, we

calibrate φ so that 25% of workers are type N in steady state. This corresponds to the

average fraction of the labor force over the age of 50 years in postwar U.S. data. Finally,

we must specify how ‘dead’ workers are ‘reborn’ in order to maintain a constant unit mass

of workers. For symmetry, we do this so that in the model’s steady state, there is an equal

measure of workers of types 1 through N − 1 (specifically, 75%/24 = 3.13% of each type).15

To investigate the quantitative predictions of our model, we log-linearize around the

steady state, simulate to obtain 250,000 observations at the weekly frequency, then time-

aggregate these observations to obtain quarterly data.16 Following Shimer (2005a), we HP

filter the (logged) data with smoothing parameter 105 to obtain second moment statistics.

14Though the emphasis of their work is very different, these papers also study a DMP framework in which
workers face a stochastic process of productivity upgrading (and downgrading). In particular, their papers
focus on the implications of ‘turbulence’ in the form of a high depreciation rate on productivity or ‘human
capital’ on steady state levels of unemployment. As such, they do not characterize the impact of learning
and upgrading on incentives for job creation, nor the implications for cyclical fluctuations.

15As a point of reference, we note that this is a close approximation to the observed age distribution of
the labor force. During the postwar period, the average fraction of labor force participants in 5-year age
bins between the ages of 20-24 years and 45-49 years ranges from a low of 10.3% to a high of 12.5%.

16We have also solved the model by obtaining (numerically) exact solutions for the case when the exogenous
shock is assumed to follow a finite state Markov process. The results are essentially identical using either
the approximate, log-linear solution method or the exact, non-linear approach.
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4.2 U.S. Business Cycle Facts

Column 1 of Table 1 presents selected business cycle statistics for the U.S. economy, 1953:I–

2009:IV. To isolate cyclical fluctuations, we HP filter the data in the same manner as the

model simulated data. See Appendix A for detailed information on data sources used

throughout the paper. Here, we highlight a number of well established observations and

discuss their implications for the quantitative analysis of search-and-matching models.

The first is that the aggregate unemployment rate is very volatile over the business cycle

relative to labor productivity. The standard deviation of unemployment relative to that of

labor productivity is 9.34; unemployment is nearly an order of magnitude more volatile

than productivity. Hence, models that rely on shocks to productivity as the driving force

require strong amplification.

Secondly, we report statistics relating to the cyclicality of job finding since this is the

source of all unemployment volatility in the model.17 Since the job finding rate, p(θ), is a

function of the vacancy-unemployment (or tightness) ratio, θ, we present statistics for this

variable as well. Column 1 of Table 1 indicates that both the job finding rate and tightness

ratio are very volatile over the cycle. Relative to labor productivity, the standard deviation

of these variables are 6.05 and 18.20, respectively.

Moreover, there exists a robust relationship between unemployment and vacancies over

the business cycle—the “Beveridge Curve.” In postwar U.S. data, this correlation is highly

negative at −0.89. This summarizes the fact that recessions are periods when firms stop

hiring (vacancies fall) and unemployment soars; booms are periods when hiring is brisk and

unemployment is low.

Finally, we highlight the correlation between labor productivity and unemployment.

Labor productivity provides a measure of the return to work effort, while unemployment

measures work effort itself. Over the business cycle, these two measures are only mildly

(negatively) related, with a correlation of −0.41; periods when work effort rises, and unem-

ployment falls, are only weakly associated with higher productivity. This weak relationship

is mirrored in the correlations of labor productivity with both the job finding rate (0.44) and

the vacancy-unemployment ratio (0.39). These weak correlations are informative regarding

the relevant business cycle impulses that should be incorporated in our models.

17Job separations in the model are constant at the exogenous rate δ. This simplifying assumption accords
with the findings of Shimer (2005a) and Hall (2005), namely that the primary determinant of unemployment
fluctuations is variation in the job finding rate. See also Fujita and Ramey (2009) and Elsby et al. (2009).
They arrive at similar conclusions, though with a slightly larger contribution to job separation rates.
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4.3 Cyclical Dynamics

4.3.1 Technology Shocks

We first review the properties of business cycle fluctuations in the standard DMP framework

driven by technology shocks. Specifically, we consider AR(1) disturbances to the produc-

tivity of all worker-firm matches. This is done by setting {fi}Ni=1 = f in our model, and

specifying:

ft = f exp(xt), xt = ρfxt−1 + εt.

Calibrating the technology shock process is difficult since productivity data is not avail-

able at the weekly frequency, and extrapolating from quarterly data is problematic. As

such we choose the persistence of the shock to match the correlation between vacancies and

unemployment in simulated data, which we hereafter refer to as the Beveridge curve. This

requires ρf = 0.981. As it is common in log-linearized models around the steady state such

as ours, our model’s implications for relative volatilities and correlations between different

variables are invariant to the variance of the shock innovation. As such we concentrate on

these statistics in what follows.

The results for the standard DMP model are presented in Column 2 of Table 1. The

model delivers a standard deviation of unemployment relative to productivity of 1.21, which

is approximately 8 times smaller than in the data. This large discrepancy between theory

and data has been discussed extensively in the literature. Since the model’s unemployment

fluctuations are driven solely by the response of job creation, it is not surprising to see

that the model performs poorly with respect to the job finding rate and the tightness ratio

as well. On these dimensions, the model misses by a factor of approximately 5 and 6,

respectively.

The standard DMP model also dramatically over-predicts the correlation of labor pro-

ductivity with labor market measures. Consider first the correlation with the job finding

rate and the tightness ratio. These are ‘jump’ variables in the model and the correlation

with productivity is perfect. In the data, these correlations are far from perfect. Unemploy-

ment is a state variable in the model. As such, its correlation with productivity is smaller

than minus one, but still very close at −0.96. In the data, this correlation is only −0.41.

For Mortensen and Nagypál (2007), this evidence points to the importance of other driving

forces that are omitted from the standard analysis focusing solely on technology shocks. In

the next subsection, we illustrate how shocks to the technological learning rate represents

a potentially important omitted shock.
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Table 1: Business Cycle Statistics: U.S. Data and Various Models

U.S. standard tech. news news news
data DMP learning 1 qtr 1 year 2 years

standard deviations relative to labor productivity

unemployment 9.34 1.21 5.54 1.32 1.33 1.33
job finding rate 6.05 1.32 6.18 1.44 1.44 1.44
tightness ratio 18.20 3.21 13.80 3.61 3.61 3.61

correlations with labor productivity

unemployment −0.41 −0.96 −0.31 −0.99 −0.99 −0.99
job finding rate 0.44 1.00 0.22 0.96 0.96 0.96
tightness ratio 0.39 1.00 0.22 0.96 0.96 0.96

Notes: All data are logged and HP filtered. U.S. data: 1953:I–2009:IV, various sources, see text.
Models: Quarterly averages of simulated data, 250,000 observations at weekly frequency.

4.3.2 Technological Learning Rate Shocks

In this subsection, we document the cyclical properties of our benchmark model when

fluctuations are driven by shocks to the technological learning rate, λ. We model the

learning rate as following an AR(1) process:

λt = λ exp(xt), xt = ρλxt−1 + εt.

As with the calibration of the technology shock process in Subsection 4.3.1, the calibration

of the learning rate shock process is problematic. This is because there is obviously no

empirical data on the learning rate. As such, we pursue the same strategy as that of

Subsection 4.3.1; namely we calibrate ρλ so that the model’s correlation between vacancies

and unemployment matches that of the data. This allows us to maintain comparability of

our analysis of learning rate shocks to that of technology shocks. Matching the Beveridge

Curve requires specifying ρλ = 0.970.18

18As discussed previously, the model’s predictions for relative volatilities and correlations are invariant to
the variance of the shock process. As such, we need not calibrate the standard deviation of the innovation.
This leaves open the question of what fraction of the observed volatility of labor productivity (and thus of
all other variables) learning rate shocks account for, relative to other sources of business cycle variation. As
a reference point, in order for learning rate shocks to account for all of the variance of labor productivity,
the standard deviation of the innovation would equal σε = 0.185. To quantify this, note that the steady
state learning rate is calibrated so that the average employed worker realizes a productivity upgrade every
54 weeks. In the stochastic model, the 68% coverage region around the median learning duration would
range from approximately 6 months to just over 2 years.
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The results are presented in Column 3 of Table 1. Learning rate shocks generate sub-

stantial amplification in labor market variables. The volatility of unemployment relative to

productivity is more than 4 times that of the standard DMP model (displayed in Column 2);

the same is true regarding the volatility of the job finding rate and the tightness ratio, rel-

ative to productivity.19 Hence, our model makes substantial progress toward resolving the

unemployment volatility puzzle, especially when viewed from the perspective of cyclicality

in job creation.20

Moreover, our model makes substantial progress toward resolving the unemployment-

productivity correlation puzzle. The model generates a correlation between these two vari-

ables of −0.31. This is close to the value of −0.41 observed in the data, and far from the

value near minus one generated by the standard DMP model driven by technology shocks.

This is mirrored in our model’s ability to generate realistic correlations of labor produc-

tivity with the job finding rate and the tightness ratio. In the data, these correlations are

0.44 and 0.39, respectively; in the model, they are 0.22. Learning rate shocks effectively

decouple the dynamics of productivity from that of the labor market. This implies business

cycle behavior that is closer to that observed in the U.S. data, relative to models where

fluctuations are driven by shocks to technology.

To better understand our model relative to the standard DMP model, we present impulse

response functions for unemployment and labor productivity in Figure 1. The vertical scale

of both panels is identical to facilitate comparison across models.

Panel A presents responses for the conventional business cycle impulse, specifically, the

response to a positive one standard deviation technology shock. Technology shocks have

a direct impact on matched workers’ productivity. Hence, labor productivity jumps upon

impact of the shock, gradually declining to steady state thereafter. This shock implies

an immediate impact on firm profit. From the free entry condition, vacancies respond

immediately. Because of the high empirical job finding rate that the model is calibrated to,

unemployment responds quickly, peaking 15 weeks (or about 1 quarter) after the impact

period of the shock.

19These results are not due to the mechanisms stressed by Hagedorn and Manovskii (2008). We verify this
by solving a version of our benchmark model (with N = 25) when driven solely by conventional technology
shocks. This version of the model features the same magnification result as in the standard DMP model.
For brevity we do not present the results here, but they are available from the authors upon request.

20In simulation experiments, we explore the robustness of our findings with respect to the value of N . We
find that the model’s volatility of unemployment declines monotonically as N increases from 2 to 25, but
‘flattens’ substantially for N > 10. For instance, between N = 10 and N = 25, the standard deviation of
unemployment relative to productivity changes only from 5.62 to 5.54.
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Figure 1: Impulse Response Functions: Standard DMP and Technological Learning Models
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Notes: Response to positive, one standard deviation shock. Solid (blue) line: unemployment;
dashed (red) line: labor productivity.

These responses clearly illustrate the shortcomings of technology shock-driven cycles in

the DMP model. Because the peak response of both unemployment and labor productivity

occur in the short-run, this implies a counterfactually strong correlation of the two variables

over the business cycle. Moreover, the response of unemployment is of the same order of

magnitude as that of productivity. Hence, as discussed extensively in the literature, the

model displays much weaker amplification of unemployment, relative to that observed in

the data.

Panel B displays the response to a positive one standard deviation learning rate shock

in our model. The jump in the learning rate creates a jump in the surplus from a match.

From the free entry condition, vacancies respond immediately, and unemployment soon

after. The response of unemployment peaks 16 weeks (about 1 quarter) after the impact

period of the shock.

In contrast to a technology shock, a learning rate shock has only an indirect effect

on labor productivity via the type composition of the workforce. After a positive shock

to λ, the economy-wide upgrading rate rises. This causes productivity to rise as workers

shuffle from lower to higher types at a faster rate. But because the learning process must
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still be undertaken, the dynamic response of productivity is persistent, and only peaks

about 120 periods (or about 2 years) after the shock. As a result, our model naturally

decouples the dynamics between unemployment and labor productivity. While the response

of unemployment peaks in the short-run, productivity peaks in the long-run. Hence, learning

rate shocks generate a low correlation between these two variables, as observed in the data.

Moreover, learning rate shocks generate a substantially stronger effect on unemployment

than on productivity. To understand the response of unemployment, consider the version

with only two types, where the return to job creation, namely total surplus in type L

matches, is displayed in equation (11). This surplus is determined largely by the value of

learning, ∆, which represents the expected future profit gain from an upgrade. Since λ

shocks have a direct impact on the learning value, they have strong effects on job creation

and unemployment.

On the other hand, the effect of learning rate shocks on labor productivity is quantita-

tively weak. This can be seen analytically from the log-linearized response of productivity

to a λ shock. Given the model’s timing, there is no impact in the period of the shock, since

upgrading is reflected in output with a one period lag. With N = 2, the response of labor

productivity in the following period, L̂P t+1, is given by:

L̂P t+1 = X

{(
nL + nH
nH

)[
λ(1− δ)

]
λ̂t −

(
αθαLuL
nL

)
θ̂Lt

}
.

Here, ni (ui) denotes the steady state measure of employed (unemployed) workers of type i,

θL is the steady state tightness ratio in market L, X is a constant (a function of parameters

and steady state values), and the circumflex represents log-linearized deviations from steady

state. The first term in the curly brackets indicates the effect of the λ shock. Its strength

depends on the steady state distribution of worker types, (nL + nH)/nH (the larger the

fraction of L types with the potential to upgrade, the bigger the effect), and importantly,

the level of the steady state learning rate, as captured by the term in square brackets.

In order to account for life-cycle earnings dynamics, our calibration requires a small value

for λ. Hence, the response of labor productivity to a learning rate shock is quantitatively

small.21

21Deriving log-linearized expressions for labor productivity at longer time horizons is difficult, given the
need to track the dynamic response of the distribution of workers across types and employment status. Note
also that in the equation above, the second term in curly brackets is negative. This reflects the fact that a
positive λ shock generates a response of job creation for L types (and no response in creation for H types).
Hence, the distribution of employment shifts toward low proficiency workers. This negative composition
effect offsets the positive effect of faster upgrading on the response of labor productivity. However, in our
numerical experiments, this offsetting effect is small.
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4.3.3 Learning Rate Shocks and “News Shocks”

In this section, we provide evidence for the relevance of learning rate shocks—and, in par-

ticular, their decoupling of productivity and unemployment dynamics—for business cycle

analysis by relating our model’s results to the recent “news shock” literature.

In a recent paper, Beaudry and Portier (2006) use a number of structural VAR tech-

niques to identify shocks to productivity in U.S. data. They find that shocks to long-run

productivity have essentially no effect on productivity upon impact.22 Instead, productivity

is found to respond in a gradual, persistent manner. On the other hand, measures such as

the stock market index and employment are found to respond immediately (i.e., within the

first quarter) to these long-run TFP shocks.

Technological learning rate shocks generate dynamic responses that share these features.

Hence, shocks to the learning rate provide a theoretical interpretation of empirically identi-

fied “news shocks.” This is illustrated in Figure 2, where we plot impulse response functions

to a learning rate shock. In Panel A, we display the response of the model’s stock price

index. We construct this index as a weighted average of the present discounted value of

firm profits in all match types, {Ji}Ni=1, where the weights are the proportions of each type

in the model’s steady state. A positive λ shock causes the value of type i = 1, . . . , N − 1

matches to jump immediately as the ‘upside risk’ of these matches increases.23 Hence, the

stock price index jumps upon impact of the shock; the response gradually returns to zero

as λ returns to its steady state value.

Panel B displays the response of the aggregate job finding rate. The learning rate

shock causes firm surplus for all type i < N firms to jump upon impact. From the free

entry condition, vacancies and job finding rates jump. Panel C displays the response of

the aggregate unemployment rate. Unemployment is a state variable, and therefore does

not respond in the period of the shock, but responds very quickly after impact. Hence,

economic activity, as measured by stock prices, job creation, and unemployment respond

within the quarter of the learning rate shock.

In contrast, labor productivity responds in a persistent, protracted manner. This is

evidenced in Panel D. Shocks to the learning rate induce gradual changes in the productivity

composition of the workforce. As a result, the productivity response is smooth, peaking

22In their benchmark bivariate system, shocks identified to have a permanent impact on productivity are
found to have a small, negative effect on productivity upon impact (though the response is statistically indis-
tinguishable from zero). And interestingly, shocks to stock market prices that are orthogonal to productivity
upon impact generate a nearly identical dynamic response to TFP.

23Recall that the value of type N matches is unaffected.

23



Figure 2: Impulse Response Functions to a Positive Learning Rate Shock
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approximately 120 periods—or over 2 years—after the initial shock. Hence, the productivity

response to learning rate shocks are observed in the long run. These features are consistent

with the responses identified by Beaudry and Portier (2006).

Finally, while our model conforms with the empirical evidence for news shocks, the

theoretical mechanism embodied by learning rate shocks are distinct from those in recent

models. In those papers (e.g. Beaudry and Portier (2007), Jaimovich and Rebelo (2009),

and den Haan and Kaltenbrunner (2009)), news shocks are modelled as signals of technology

shocks that are to arrive a number of quarters in the future. Upon arrival, these innovations

immediately affect productivity. In contrast, shocks to the learning rate represent the

arrival of innovations that vary in their ease of technological learning; their effects on labor

productivity are realized in a delayed manner, via the process of learning-by-doing.

This distinction is not just a matter of interpretation: while learning rate shocks make

progress on rationalizing labor market dynamics in the DMP framework, conventionally
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modeled news shocks do not. This is illustrated in the rightmost columns of Table 1, where

news shocks are introduced in the standard DMP model in the usual way—as the arrival of

information at date 0 of a change in productivity in period t̂.24 Column 4 presents results

for a one quarter ahead (t̂ = 13 weeks) news shock, while Column 5 presents the case of

a one year ahead (t̂ = 52 weeks) news shock. The results of Beaudry and Portier (2006)

indicate that the long-run effects of news shocks on productivity are evidenced at a horizon

of 8 to 10 quarters (or about 2 years); this coincides with the horizon of maximal effect in

our model with learning rate shocks (see, for instance, Panel D of Figure 2). Given this,

Column 6 presents the results for a 2 year (t̂ = 104 weeks) ahead news shock.

As is obvious, the amplification of unemployment fluctuations relative to productivity

is essentially identical to the case with standard technology shocks, discussed in Subsec-

tion 4.3.1, and presented in Column 2. To understand this, Figure 3 presents impulse

response functions for unemployment and labor productivity to a positive one standard de-

viation news shock. Panel A presents the case for a one quarter ahead news shock, and Panel

B for a one year ahead shock. A conventional news shock has a direct impact on produc-

tivity at the time the technology arrives. Vacancy creation and, therefore, unemployment

respond prior to the period of arrival. Nonetheless, the maximal response of unemployment

is of the same order of magnitude as the response of productivity; indeed, the maximal re-

sponse of unemployment is essentially identical to the case for standard technology shocks

presented in Panel A of Figure 2. Hence, conventionally modelled news shocks make little

progress in solving the unemployment volatility puzzle.

Similarly, conventional news shocks make no progress on the unemployment-productivity

correlation puzzle; the correlation between these variables remains near minus one in

Columns 4 through 6. To understand this, we refer again to Figure 3. While vacancies

and unemployment begin to respond prior to the arrival of the technological change, the

peak response of both unemployment and productivity are essentially simultaneous. As

a result, conventional news shocks imply a counterfactually strong correlation of the two

variables.

Hence, the manner in which news shocks are modeled is important. Technological

learning rate shocks generate “news shock” dynamics and help rationalize the two labor

market puzzles; news shocks modelled as the arrival of information of shocks to future

productivity make little to no progress on the puzzles.

24For brevity, we do not present details regarding this version of the model, and instead, make them
available upon request.
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Figure 3: Impulse Response Functions: Conventionally Modeled News Shocks
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Finally we note that our model, like almost all models driven solely by news shocks,

cannot account for the fact that in the U.S. data labor productivity leads unemployment

by two quarters. While news shocks have been found to account for a substantial fraction

of business cycle variation in U.S. data, we view this lead-lag evidence as suggesting the

importance of other shocks.

4.4 Learning Rate Shocks and the Return to Experience

Our analysis emphasizes the importance of learning rate shocks in accounting for the cycli-

cal behavior of aggregate unemployment and productivity. At its core, the idea is that

individual workers gain technological proficiency and productivity while on the job, and

that the rate at which this happens varies over the business cycle. Shocks to the learning

rate tilt the life-cycle earnings profile, making it steeper when the shock is positive and

flatter when the shock is negative. Hence, our model puts emphasis on the return to labor

market experience and its cyclical properties.

Relatively little empirical work has been devoted to identifying the cyclicality of the
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return to experience. A notable exception is that of French et al. (2006). Their work

focuses on the evolution of employment and earnings for a cohort of young workers (18 to

28 year olds) in the Census Bureau’s Survey of Income and Program Participation (SIPP).

Using wage data for continuously employed workers who remain with the same employer,

they are able to identify time variation in the return to experience. French et al. (2006)

find this return to be strongly procyclical. In their baseline specification, a one percent

rise in the unemployment rate generates a 1.1% fall in the return to experience, with a two

standard deviation confidence band of 0.5%–1.8%.25

In light of this, we perform the same exercise in simulated data from our model. Specifi-

cally, we track the wages of a cohort of young workers over a 25 year period; this is done by

“interviewing” the workers at four month intervals (the same frequency of interview waves

in the SIPP).26 As in French et al. (2006), we estimate the return to experience at any

point in time as the (cross-sectional) average log wage change from the previous interview,

for those who were continuously employed. Repeating this period-after-period over the 25

years obtains a time series for the return to experience. We then determine its cyclicality by

regressing it on a constant, time trend, and the aggregate unemployment rate, as in French

et al. (2006).

We repeat this simulation exercise 100 times and report the median coefficient estimate.

In our model, a one percent rise in unemployment generates a 1.6% fall in the return to

experience. This is in line with the point estimate of 1.1%, and within the two standard

deviation confidence band, reported in French et al. (2006). It is worth noting that our

25French et al. (2006) also consider a second specification which attempts to control for a time effect
that is common to all workers. This common time effect might capture, for instance, aggregate technology
shocks that affect all wages, independent of a worker’s experience. In this case, the cyclicality of the return
to experience is significantly muted. But as French et al. (2006) point out, identifying this aggregate time
effect is not at all straightforward in their empirical framework. They choose to proxy for this using the
wages of new labor market entrants, with the idea that workers with no experience are not affected by
changes in the return to experience. This identification assumption might hold, for instance, in a model
with static wage determination, where wages are determined only by current marginal product. However,
this identification assumption is clearly violated in our model. With Nash bargaining, wages are forward-
looking and respond to changes in match surplus due to changes in the learning rate; and this is true for
workers with no experience (type L workers in the simple N = 2 version, type 1 workers in the N > 2
version). As such, we believe future empirical work attempting to disentangle common time effects from the
return to experience would be of clear value.

26Our cohort of workers is initialized by presuming that all workers enter the labor force at age 18 as
unemployed, type i = 1 workers. Applying the steady state job finding, job separation, and learning rates to
these workers for a six month period allows us to generate the distribution of 18 year olds across employment
statuses and types. The distribution of 19 year olds is obtained from a further 12 months of transitions
for the initial cohort, and so on, until we have distributions for workers of all ages between 18 and 28 (the
same age group studied in French et al. (2006)). These workers of different ages are then used to generate a
representative SIPP cohort by weighting them according to the age distribution of 18 to 28 year olds in the
U.S. labor force, as found in 1984 (the initial year of the SIPP) in the CPS.

27



model analysis assumes that all fluctuations in unemployment are due to shocks to the

learning rate. In reality, there are likely to be other shocks contributing to the cycle that

do not affect the return to experience.27 Hence, the inclusion of such shocks in a more

elaborate model would also dampen the estimated covariance of unemployment with the

return to experience.

5 Conclusion

In this paper, we have focused on two key labor market observations in postwar U.S. data.

The first is that unemployment is very volatile over the business cycle relative to labor

productivity. The second is that cyclical fluctuations in unemployment and productivity

are only mildly negatively correlated. The canonical model of equilibrium unemployment,

when driven by technology shocks, fails to account for either of these facts.

We propose a model of technological learning that makes progress on both shortcomings.

Specifically, we construct a tractable search-and-matching model in which: (a) it takes time

for workers to become fully proficient with technology, and (b) shocks to the speed or ease of

learning-by-doing are a source of business cycle fluctuations. Quantitative analysis indicates

that our model generates substantial amplification in labor market variables and delivers a

correlation between unemployment and labor productivity that is close to the data. Our

model also provides a new theoretical interpretation of news shocks. Specifically, learning

rate shocks generate long-run fluctuations in productivity that are associated with short-

run fluctuations in stock prices and unemployment. Crucially, our model does this while

simultaneously making progress on the unemployment volatility puzzle and unemployment-

productivity correlation puzzle. By contrast, conventional models of news shock driven

business cycles make essentially no progress on these puzzles.

27For instance, while our model does well in replicating the volatility of job creation, it understates that
of unemployment. Recent work attributes one quarter to one third of unemployment variability to cyclical
job destruction. Hence, one could imagine shocks to job separation rates as generating fluctuations in
unemployment that are unrelated to the return to experience.
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A Data Sources

Our measure of unemployment is the quarterly average of the seasonally adjusted monthly
series constructed by the Bureau of Labor Statistics (BLS) from the Current Population
Survey (CPS). Our measure of labor productivity is (quarterly, seasonally adjusted) output
divided by employment in the nonfarm business sector as constructed by the BLS Major
Sector Productivity program. To construct the job finding rate, we follow the approach
of Shimer (2005a,b, 2012), using monthly data on employment, unemployment, and short-
term unemployment tabulated from the CPS. We use vacancy data provided by Barnichon
(2010), divided by unemployment, to construct the tightness ratio. Specifically, we use his
“composite Help-Wanted Index” which combines information on the number of newspaper
and online job advertisements compiled by the Conference Board.

Quarterly data on aggregate output and its expenditure components are obtained from
the National Income and Product Accounts. Specifically, real output, consumption, and
investment refer to seasonally adjusted gross domestic product, personal consumption ex-
penditures, and gross private domestic investment, respectively, expressed in chained 2005
dollars. Finally, employment refers to the quarterly average of the seasonally adjusted
monthly series for the civilian employment-population ratio, constructed by the BLS from
CPS data.

B Efficiency

To show that our equilibrium is efficient, we derive equations that fully characterize the
solution to a planner’s problem and show that the same equations characterize equilibrium
under Hosios (1990)’s condition. In a separate appendix available from the authors’ web-
pages, we show that our equilibrium also obtains in a directed search environment in which
firms post wages.

B.1 Compensations

To begin, we derive the compensations from generalized Nash bargaining. These are re-
quired for the characterizations below. The market for high productivity workers is identical
to that of the standard DMP model. Therefore, the compensation in such matches is entirely
standard:

ωH = τ(fH + κθH) + (1− τ)z. (16)

To obtain the compensation in low productivity matches, begin with proportionality of
surplus:

(1− τ) (WL − UL) = τJL.
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Worker surplus can be expressed as:

(WL − UL) = ωL − z + βE
{

(1− δ)
[
λ
(
W ′H − U ′H

)
+ (1− λ)

(
W ′L − U ′L

) ]
− p(θL)

(
W ′L − U ′L

)
+ λ

(
U ′H − U ′L

)}
,

or:

(1− τ) (WL − UL) = (1− τ)(ωL − z) + βE
{

(1− δ)τ [λJ ′H + (1− λ)J ′L]

− τp(θL)J ′L + (1− τ)λ
(
U ′H − U ′L

)}
.

Equating this with τJL and using free entry, we get:

ωL = τ(fL + κθL) + (1− τ)z − (1− τ)λβE
[
U ′H − U ′L

]
. (17)

The last term is (1− τ) times the worker’s value of learning.

The worker’s value of learning can be simplified by noting that:

UH − UL = βE
[
p(θH)

(
W ′H − U ′H

)
− p(θL)

(
W ′L − U ′L

)
+ [U ′H − U ′L]

]
.

Using the proportionality of surplus and the free entry condition again, we get:

UH − UL = τ̄κ(θH − θL) + βE[U ′H − U ′L]

= τ̄κE
∞∑
s=0

βs(θ+s
H − θ

+s
L ) (18)

where τ̄ = τ/(1− τ), θ+0
i = θi, θ

+1
i = θ′i, θ

+2
i = θ′′i , and so on.

B.2 A Planner’s Problem

Let V (uL, uH , nL, nH) denote the value function of the planner who inherits unemployment
ui for type i ∈ {L,H} and employment ni for type i ∈ {L,H}:

V (uL, uH , nL, nH) = max
{θi,u′i,n′i}i={L,H}

{
(uL + uH)z + nLfL + nHfH

− κ(uLθL + uHθH) + βV (u′L, u
′
H , n

′
L, n

′
H)
}
,

subject to the following laws of motion:

u′L ≥ (1− p(θL))uL + (1− λ)δnL,

u′H ≥ (1− p(θH))uH + λδnL + δnH ,

n′L ≤ p(θL)uL + (1− λ)(1− δ)nL,
n′H ≤ (1− δ)nH + p(θH)uH + λ(1− δ)nL.
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Setting uL + uH + nL + nH = 1 and letting λui be the multiplier on the law of motion
for ui and λni be the multiplier on the law of motion for ni, the first-order conditions with
respect to θi, i ∈ {L,H}, are:

−κ+ p′(θL)(λuL + λnL) = 0,

−κ+ p′(θH)(λuH + λnH ) = 0.

The first order conditions with respect to u′i and n′i, i ∈ {L,H}, are:

βVui(u
′
L, u

′
H , n

′
L, n

′
H) + λui = 0,

βVni(u
′
L, u

′
H , n

′
L, n

′
H)− λni = 0.

Finally, the envelope conditions are:

VuL = z − κθL − λuL(1− p(θL)) + λnLp(θL),

VuH = z − κθH − λuH (1− p(θH)) + λnHp(θH),

VnL = fL − λuL(1− λ)δ − λuHλδ + λnL(1− λ)(1− δ) + λnHλ(1− δ),
VnH = fH − λuHδ + λnH (1− δ).

Combining the first-order and envelope conditions, the following equations characterize
a steady state:

λuL + λnL =
κ

p′(θL)
(19)

λuH + λnH =
κ

p′(θH)
(20)

β
(
z − κθL + p(θL)(λuL + λnL)− λuL

)
+ λuL = 0 (21)

β
(
z − κθH + p(θH)(λuH + λnH )− λuH

)
+ λuH = 0 (22)

β
(
fL − δ

[
(1− λ)(λuL + λnL) + λ(λuH + λnH )

]
+ (1− λ)λnL + λλnH

)
− λnL = 0 (23)

β
(
fH − δ(λuH + λnH ) + λnH

)
− λnH = 0 (24)

It will prove convenient to use these equations get expressions for some of the multipliers.
From equation (21), we have:

λuL = −β(αz + (1− α)θLκ)

α(1− β)
. (25)
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Similarly, from equation (22), we have:

λuH = −β(αz + (1− α)θHκ)

α(1− β)
, (26)

and from equation (24) we have:

λnH =
β(αfH − δθHκ/p(θH))

α(1− β)
. (27)

B.2.1 Market H

Notice that equations (20), (26) and (27) fully characterize θH in an unrelated way to θL,
or submarket L in general. Using (26) and (27) in (20):

β
(
αfH − δθHκ/p(θH)− αz − (1− α)θHκ

)
α(1− β)

=
κ

p′(θH)
.

Using the fact that p′(θ) = αp(θ)/θ, we have:

β

(
α(fH − z)− (1− α)θHκ− δ

θHκ

p(θH)

)
=

(1− β)αθHκ

αp(θH)
.

Rearranging, θH is characterized by:

β
(
α(fH − z)− (1− α)θHκ

)
1− β(1− δ)

=
θHκ

p(θH)
. (28)

B.2.2 Market L

Rewrite equation (23) as follows:

λnL = β̄(fL − δ(1− λ)(λuL + λnL)− δλ(λuH + λnH )− λ(λnL − λnH )),

where β̄ = β/(1− β). We now need an expression for λnL − λnH . From equations (19) and
(20), we have

λnL − λnH =
κ

p′(θL)
− κ

p′(θH)
+ λuH − λuL .

Using the expressions for λuH and λuL from equations (25) and (26), this is

λnL − λnH =
κ

p′(θL)
− κ

p′(θH)
+ (β̄/α)(1− α)(θL − θH)κ.

So λnL becomes

λnL = β̄
[
fL − δ(1− λ)(λuL + λnL)− δλ(λuH + λnH )

− λ
(

κ

p′(θL)
− κ

p′(θH)
+ (β̄/α)(1− α)(θL − θH)κ

)]
,
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or, rearranging,

λnL = β̄

[
fL − [δ(1− λ) + λ]

κ

p′(θL)
+ (1− δ)λ κ

p′(θH)
− λ(β̄/α)(1− α)(θL − θH)κ

]
.

Using this last equation together with the expression for λuL from equation (25) in equa-
tion (19), we have

β̄
[
fL − z − (1− α)θLκ/α− [δ(1− λ) + λ]

κ

p′(θL)
+ (1− δ)λ κ

p′(θH)

− λ(β̄/α)(1− α)(θL − θH)κ
]

=
κ

p′(θL)
.

Grouping terms and rearranging,

β̃

[
fL − z − (1− α)θLκ/α+ (1− δ)λ κ

p′(θH)
+ λ(β̄/α)(1− α)(θH − θL)κ

]
=

κ

p′(θL)
, (29)

where β̃ = β/(1− β(1− δ)(1− λ)). Given the value of θH which solves equation (28), this
last expression characterizes θL.

B.3 Relation to Equilibrium

B.3.1 Market H

The steady state value of the firm in market H is

JH =
fH − ωH

1− β(1− δ)
.

Using the wage equation (16) in the free-entry condition βp(θH)JH = θHκ, we have

β
(
(1− τ)(fH − z)− τθHκ

)
1− β(1− δ)

=
θHκ

p(θH)
.

Clearly, this is equivalent to its counterpart (28) from the Planner’s problem if τ = 1− α.

B.3.2 Market L

The free entry condition in that market reads

βp(θL)JL = θLκ,

where
JL = fL − ωL + β(1− δ)[λJH + (1− λ)JL].
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We can use the free entry condition JH = θHκ/βp(θH) to get

JL =
fL − ωL + β(1− δ)λθHκ/βp(θH)

1− β(1− δ)(1− λ)
.

From equations (17) and (18), the wage in market L can be written as

ωL = τ(fL + κθL) + (1− τ)z − β̄λτκ(θH − θL).

Using this wage in JL, the free entry condition becomes

βp(θL)
fL −

(
τ(fL + κθL) + (1− τ)z − β̄λτκ(θH − θL)

)
+ (1− δ)λθHκ/p(θH)

1− β(1− δ)(1− λ)
= θLκ.

Rearranging, we have

β̃
[
(1− τ)(fL − z)− τκθL + β̄λτκ(θH − θL) + (1− δ)λακ/p′(θH)

]
= ακ/p′(θL). (30)

If α = 1− τ , this becomes

β̃
[
fL − z − (1− α)θLκ/α+ (1− δ)λκ/p′(θH) + λ(β̄/α)(1− α)κ(θH − θL)

]
= κ/p′(θL),

which is identical to its counterpart (29) from the Planner’s problem.

C Proof of Proposition 2

Proof. Start with steady state equation (11):

SL = fL − z − τ̄κθL + β(1− δ)SL + λβ [(1− δ)(SH − SL) + (UH − UL)] ,

where, again, τ̄ ≡ τ/(1− τ). This can be rewritten:

SL [1 + β(1− δ)λ− β(1− δ)] = fL − z − τ̄κθL + λβ(1− δ)SH + λβ (UH − UL) .

Using equation (1) and Nash bargaining, we have in steady state:

UL =
1

1− β
[z + τ̄κθL] .

Substitute this into the SL equation above:

SL [1 + β(1− δ)λ− β(1− δ)] = fL − z − τ̄κθL + λβ [(1− δ)SH + UH ]− λβ

1− β
[z + τ̄κθL] .

Using Nash bargaining and the zero profit condition, we can express SL as a function of θL:

SL =
κ

β(1− τ)q(θL)
.
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Substituting again, we have:

0 = G ≡ − κ

β(1− τ)q(θL)
[1 + β(1− δ)λ− β(1− δ)] + fL − z

− τ̄κθL + λβ [(1− δ)SH + UH ]− λβ

1− β
[z + τ̄κθL] .

Note that:
∂θL
∂λ

= −
∂G
∂λ
∂G
∂θL

,

and

∂G

∂λ
= − κ

β(1− τ)q(θL)
β(1− δ) + β(1− δ)SH + βUH −

β

1− β
[z + τ̄κθL]

= β(1− δ) [SH − SL] + β [UH − UL] > 0.

Here we use the steady state values for SL and UL derived above, and the results of Propo-
sition 1 and Corollary 1 to sign both square bracketed terms. Finally:

∂G

∂θL
= −τ̄κ

(
1 +

βλ

1− β

)
− κ [1 + β(1− δ)λ− β(1− δ)]

β(1− τ)

(
− q
′(θL)

q(θL)2

)
< 0,

where we use the fact that q′(θ) < 0. This establishes that ∂θL/∂λ > 0, as desired.
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