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 INTERNATIONAL ECONOMIC REVIEW

 Vol. 56, No. 1, February 2015

 TECHNOLOGICAL LEARNING AND LABOR MARKET DYNAMICS*

 By Martin Gervais, Nir Jaimovich, Henry E. Siu, and Yaniv Yedid-Levi1

 University of Iowa, USA; Duke University, U.S.A. and NBER, U.S.A; University of British
 Columbia, Canada, and NBER, U.S.A.; University of British Columbia, Canada

 The search-and-matching model of the labor market fails to match two important business cycle facts: (i) a high
 volatility of unemployment relative to labor productivity, and (ii) a mild correlation between these two variables. We
 address these shortcomings by focusing on technological learning-by-doing: the notion that it takes workers' time using
 a technology before reaching their full productive potential with it. We consider a novel source of business cycles,
 namely, fluctuations in the speed of technological learning, and show that a search-and-matching model featuring such
 shocks can account for both facts. Moreover, our model provides a new interpretation of recently discussed "news
 shocks."

 1. INTRODUCTION

 A long-standing challenge in macroeconomics is accounting for labor market dynamics over
 the business cycle. This challenge is particularly acute in the seminal model of equilibrium
 unemployment due to Pissarides (1985), which, given related contributions by Diamond (1982)
 and Mortensen (1982), we hereafter refer to as the DMP framework. When applied to business
 cycle analysis through the introduction of stochastic shocks to technology, the model features
 two primary shortcomings.

 First, as discussed in Andolfatto (1996), Shimer (2005a), Hall (2005), and Costain and Reiter
 (2008), the model fails to generate sufficient volatility of unemployment relative to that of labor
 productivity in comparison to postwar U.S. data. This discrepancy indicates that the textbook
 DMP model embodies weak amplification of technology shocks into unemployment fluctuations
 and has been referred to as the unemployment volatility puzzle in the literature.2 The second
 shortcoming relates to the correlation between unemployment and labor productivity. In U.S.
 data, these two variables are only mildly negatively correlated, whereas in the model, the
 correlation is near minus one. We refer to this as the unemployment-productivity correlation
 puzzle. Mortensen and Nagypal (2007) argue that this discrepancy points to the omission of an
 important driving force in the cyclical analysis of the DMP framework.

 Within this context, in Sections 2 and 3 we study a very simple search-and-matching model
 of the labor market that addresses both shortcomings. As in much of the literature, our model
 retains an important relationship between technological change and the business cycle. How
 ever, we depart by focusing on technological learning-by-doing: the notion that it takes workers

 'Manuscript received May 2010; revised December 2013.
 1 We thank Manuel Amador, David Andolfatto, Gadi Barlevy, Paul Beaudry, Aspen Gorry, Jean-Olivier Hairault,

 Andreas Hornstein, Patrick Kehoe, Richard Rogerson, Peter Rupert, Martin Schneider, Shouyong Shi, Robert Shimer,
 and workshop participants at Bocconi, CREI, LSE, Minneapolis Fed, Princeton, Richmond Fed, Tel Aviv, UC Santa
 Cruz, the 2011 SED Meeting, the 2011 Duke Macroeconomics Conference, the 2011 CEPREMAP Labor Market
 Workshop, the 2011 Vienna Macro Workshop, as well as referees and the editor, Guido Menzio, for helpful comments.
 Siu and Yedid-Levi thank the Social Sciences and Humanities Research Council of Canada for support. Please address
 correspondence to: Nir Jaimovich, 213 Social Science Building, Economics Department, Duke Univeristy, Durham,
 27708 NC. E-mail: jaimo@gmail.com.

 2 Versions of the DMP framework where fluctuations are driven by demand shocks can naturally generate large
 unemployment fluctuations without any changes in productivity. See, for instance, Diamond (1982) and Kaplan and
 Menzio (2013).
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 28  GERVAIS ET AL.

 time using a technology before reaching their full productive potential with it. Indeed, the idea
 that technology is subject to a learning process is well documented.3

 The novel aspect of our framework is to model the nature of technology arrival to be stochastic
 in terms of its ease of learning-by-doing. That is, innovations are not uniform in the amount of
 learning time required for workers to become fully productive.4 We embed this idea in a simple
 search-and-matching framework where workers have the ability to increase their proficiency
 through learning-by-doing. Periods in which technologies are easier to learn or more "user
 friendly" imply an acceleration in the rate of technological learning, resulting in an increase in
 the rate of aggregate labor productivity growth. The arrival of technologies that are harder to
 learn generate a period of falling productivity growth.

 We then study the quantitative predictions of our model in Section 4, where we show that it
 generates much greater volatility of unemployment relative to labor productivity in comparison
 to the standard DMP framework. This is due to the fact that the volatility of the job finding rate,
 relative to that of labor productivity, is very close to that observed in the U.S. data. Moreover,
 the model delivers a correlation of unemployment and productivity that is much smaller (in
 absolute value) than one and, indeed, is very close to that observed in the data. To understand
 these results note that in the search-and-matching framework, firms create job vacancies in
 expectation of future profit flows when matched with a worker. In our model, potential profit
 gains that are due to learning-by-doing constitute an important component of this profit flow.
 Hence, shocks to the ease of learning generate pronounced fluctuations in expected future profit.
 This in turn generates fluctuations in job creation and unemployment. However, these shocks
 have only an indirect effect on aggregate productivity as workers gain technological proficiency.
 This enables the model to address the unemployment volatility puzzle. Furthermore, shocks to
 the learning rate of technology naturally break the tight contemporaneous correlation between
 unemployment and productivity, thereby addressing the correlation puzzle. To summarize,
 learning rate shocks generate an immediate response of job creation and unemployment, but
 given that the learning process takes time, the impact on labor productivity is persistent and
 cumulative.

 In this respect, our analysis is related to the recent literature on "news shocks." Specifically, in
 Subsection 4.3 we relate our findings to Beaudry and Portier (2006), who find that a substantial
 fraction of business cycle variation in U.S. data can be attributed to shocks to long-run Total
 Factor Productivity (TFP) that (i) have immediate effects on measures such as consumption,
 employment, and stock market value; but (ii) have effectively no effect on TFP upon impact;
 instead the effect on productivity is persistent, observed over a horizon of at least 8 to 10
 quarters. Beaudry and Portier refer to these as "news shocks," since they signal changes in
 future productivity, and find that such shocks account for at least half of the variation in hours
 worked at business cycle frequencies.5

 In our model, shocks to the learning rate generate dynamic responses in unemployment,
 productivity, and stock market value that conform with the responses to empirically identified
 news shocks. But importantly, our shock is not a news shock as modeled in the recent literature—
 that is, as signals of conventional technology shocks that are to arrive in the future.6 Indeed, we
 show that conventionally modeled news shocks do not resolve either of the two shortcomings
 in the DMP framework. In contrast, shocks (positive) to the learning rate represent the current
 arrival of innovations that are easier to implement; nonetheless, the process of learning-by-doing

 3 The literature documenting technological learning-by-doing has a long history in management and economics. See
 Wright (1936) for an early study of learning-by-doing in airplane manufacturing. For recent examples, see Argote and
 Epple (1990), Irwin and Klenow (1994), and the references therein.

 4 Again, the literature documenting variation in learning rates for new technologies is too vast to summarize com
 pletely; see, for instance, Argote and Epple (1990) and Balasubramanian and Lieberman (2010).

 5 See also Beaudry and Lucke (2009) and Schmitt-Grohe and Uribe (2012), who find similar results.
 6 See, for instance, Beaudry and Portier (2007), Jaimovich and Rebelo (2009), and den Haan and Kaltenbrunner

 (2009). See also Comin et al. (2009), who study a model in which economic activity devoted to technology adoption
 varies in response to the stochastic arrival rate of "frontier" technologies.
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 LEARNING AND LABOR MARKET DYNAMICS  29

 must still be undertaken. Naturally, and precisely because the dynamics of our model resemble
 those of empirically identified news shocks, unemployment in the model is bound to lead
 labor productivity, which suggests that other shocks must be important to explain why labor
 productivity leads unemployment by about two quarters in U.S. data.

 At its core, our model emphasizes the idea that workers gain technological proficiency while
 on the job and that the rate at which this happens varies over the business cycle. Hence, our
 model puts emphasis on the return to labor market experience and its cyclical properties. In
 Subsection 4.4, we relate our finding with those in French et al. (2006), who provide evidence
 for the procyclicality of the return to experience.

 Our work is also related to a growing body of research studying the cyclical implications
 of the DMP framework. Most of this work addresses the unemployment volatility puzzle.7 By
 maintaining the assumption of a technology shock-driven cycle, these papers do not make
 progress on the unemployment-productivity correlation puzzle.8 By focusing on an alternative
 interpretation of technological change over the cycle—shocks to the ease of learning—we show
 that the DMP framework is able to generate substantial volatility of unemployment relative to
 productivity and to deliver a muted correlation between the two variables.

 2. ECONOMIC ENVIRONMENT

 We study a search-and-matching model of the labor market. The matching process between
 unemployed workers and vacancy posting firms is subject to a search friction. The ratio of vacan
 cies to unemployed determines the economy's match probabilities. Workers are heterogeneous
 in their proficiency with production technology. For simplicity, we assume that there are a finite
 number, N > 2, of proficiency levels that a worker can progress through over her lifetime. The
 worker's proficiency is reflected in the output in a worker-firm match. The process of improv
 ing one's proficiency with technology takes time and, crucially, occurs only while employed
 as emphasized in the learning-by-doing literature. Within this environment, the novel aspect
 of our analysis is to consider how fluctuations in the ease of learning drive the business
 cycle.

 To isolate the role of technological learning-by-doing, we make the following assumptions
 on innovations to the production technology. Innovations arrive in each and every period.
 The cost of adopting the innovation is sufficiently small that, upon arrival, all worker-firm
 matches find it advantageous to adopt. Each innovation differs from the previous period's
 along two dimensions. First, the innovation increases the efficiency (and, hence, productivity
 when matched) of all workers by a growth factor g. This efficiency gain affects all matched
 workers, irrespective of their proficiency level. For simplicity, we normalize g = 0 and focus on
 a model where productivity is stationary in the long run (has no growth trend).

 Second, innovations do not alter the proficiency level of workers per se; however, innovations
 differ in the rate at which workers gain technological proficiency and advance through the
 proficiency "ladder." This is the novel stochastic element in our analysis.

 For the sake of expositional simplicity in this section, we set TV — 2 so that a worker's profi
 ciency is either low or high. As such, becoming fully proficient with technology is represented as

 7 The literature is too vast to provide a complete summary; see, for instance, Shimer (2004), Hall (2005), Hall
 and Milgrom (2008), Pries (2008), Gertler and Trigari (2009), and Menzio and Shi (2011). Hagedorn and Manovskii
 (2008) find that, for specific calibrations, the DMP model does not suffer from a volatility puzzle. For a discussion, see
 Hornstein et al. (2005, 2007), Mortensen and Nagypal (2007), Reiter (2007), Costain and Reiter (2008), Haefke et al.
 (2013), Pissarides (2009), Eyigungor (2010), and Brtigemann and Moscarini (2010).

 8 In the RBC literature, a similar puzzle exists regarding the correlation between hours worked and the real wage.
 Early papers addressed this by introducing shocks to labor supply (see, e.g., Benhabib et al., 1991; Christiano and
 Eichenbaum, 1992); unfortunately, empirical evidence for the relevance of these shocks in accounting for postwar
 business cycles is limited. The only paper in the search framework to address this puzzle is Hagedorn and Manovskii
 (2011), who follow Benhabib et al. (1991) by introducing home production/preference shocks to the DMP model.
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 30  GERVAIS ET AL.

 a one-time level shift: a jump in the worker's proficiency from low to high.9 As a simple example,
 consider the case of a worker in an office setting, where the current mode of production re
 quires the use of personal computing technology. Full proficiency with the technology requires
 a complete understanding of how to use the PC's operating system. For workers without full
 proficiency, attaining this level of understanding requires time using the PC while employed;
 this is represented by a hazard rate, X e (0,1], which we refer to as the learning rate. An em
 ployed worker currently without full proficiency in the PC technology produces output//.. With
 probability X she "figures out" the technology; in the next period, she produces fn > fi■ With
 probability (1 - X) she remains at less than full proficiency, producing//..

 Our analysis focuses on shocks to the learning rate, X—shocks to the ease at which technology
 can be learned. Returning to our example, consider a PC operating system such as Microsoft
 Windows. Between periods t — 1 and t, the innovation that arrives is an update from Windows
 1.1 to (say, a faster version) Windows 1.2. This innovation increases the efficiency of all workers
 by a factor g.10 However, versions 1.1 and 1.2 are identical in use and the ease of learning, so
 that the learning rate remains at A.. In period / + 1, the innovation that arrives is an update from
 Windows 1.2 to Windows 2.0. Again, this update increases efficiency by g. However, because
 the new version is more "user-friendly," it increases the rate at which workers become fully
 proficient with the technology. In this case, innovation would represent a positive shock to the
 learning rate, X' > X.

 2.1. Market Tightness. A worker's proficiency or type is perfectly observable. Accordingly,
 a firm can maintain a vacancy for workers of either type, i e {L,H}. The cost of maintain
 ing a vacancy for either type is k. There is free entry into vacancy posting on the part of
 firms. We define market tightness in market i, 0,-, as the ratio of the number of vacancies
 maintained by firms to the number of workers looking for jobs of type i. Although the tight
 ness of each market is an equilibrium object, they are taken parametrically by firms and
 workers.

 We denote the probability that a worker will meet a vacant job in market i by p(di), where
 p : H+ —► [0, 1] is a strictly increasing function with p (0) = 0. Similarly, we let q(6t) denote the
 probability that a firm with a vacancy meets a worker in market i, where q : 7Z+ —> [0,1] is a
 strictly decreasing function with q(6) -» 1 as 0 -> 0, and q{6) = p (6)/0.

 Allowing for market segmentation across low- and high-type workers is useful for a number of
 reasons. As will become clear, it affords analytical and computational tractability, as equilibrium
 is block recursive in the sense that agents' value functions and decision rules are independent
 of the distribution of workers across types and employment status (see Shi, 2009; Menzio and
 Shi, 2010).11 In addition, it makes the economic mechanism transparent, highlighting the role
 of learning rate shocks on the incentive for job creation.

 2.2. Contractual Arrangement and Timing. We specify the compensation in a match as being
 determined via Nash bargaining with fixed bargaining weights, as in Pissarides (1985). As such,
 our results do not rely on mechanisms that change the relative bargaining power of workers
 and firms over the cycle.12

 When an unemployed worker and a firm match, they begin producing output in the following
 period. In all periods that a worker and firm are matched, the compensation is bargained with

 9 When we explore the quantitative predictions of the model in Section 4, we consider a more realistic environment
 with TV > 2 so that becoming fully proficient is a more gradual process for the worker. See also the discussion in
 Subsection 2.6.

 10 Again, recall that we normalize g = 0 for simplicity.
 11 If we did not allow for segmented markets, the qualitative implications of technological learning would be preserved.

 However, the computation of equilibrium with aggregate uncertainty would be extraneously burdensome because of
 the need to track the distribution of types in unemployment.

 12 See, for instance, Hall and Milgrom (2008) and Gertler and Trigari (2009).
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 LEARNING AND LABOR MARKET DYNAMICS  31

 complete knowledge of the worker's proficiency. We let &>,- denote the compensation of a type i
 worker.

 2.3. Technological Learning in Worker-Firm Matches. We define Ut as the value of being
 unemployed for a low-proficiency worker:

 (1) UL = Z + pE[p(eL)W'L + (1 -p(9L))U'L],

 where expectations are taken over tomorrow's learning rate. Here, z is the flow value of un
 employment, Wl is the worker's value of being employed in a match, and primes (') denote
 variables one period in the future. An unemployed worker transits to employment in the fol
 lowing period with probability p(0l)', we refer to this as the job finding probability.

 The value of being employed for a low-proficiency worker is

 (2) WL=coL + f5E[X [(1 - S)W'H + SU'H] + (1 - X) [(1 - 8)W'L + SU'LJ].

 During the period, the employed worker becomes proficient with probability X, which is stochas
 tic. At the end of the period, the match is separated with (exogenous and constant) probability
 8 e (0,1], In the case where the worker figures out the technology but is separated from her
 match, she enters the next period with value U//. That is, the proficiency that the worker acquires
 on-the-job is retained when unemployed and can be applied to future matches. In this sense,
 the technology being learned is not firm or match specific. Note also that learning happens
 only when a worker is matched. That is, because technological proficiency is acquired through
 learning-by-doing, the worker cannot transit from type L to H while unemployed.

 There are a large number of firms that can potentially maintain vacancies, as long as they pay
 the cost, k. The value of maintaining a vacancy for low-proficiency workers is

 (3) Vl = -k + pE[q(0L)J'L + (1 - q(0L)) max (Vj, 0) ],

 where q(0L.) denotes the firm's job filling probability. The maximization within the expectation
 term implies that firms who do not find a worker may choose to maintain a vacancy in either
 market or be inactive in the following period. The firm's value of being matched with a type L
 worker is

 (4) JL=fL~coL + PE[( 1 - 8) [XJ'H + (1 - X)J'L] + 5 max (V' 0)].
 i

 This value is composed of the contemporaneous profit—output minus the worker's
 compensation—plus the expected discounted value from next period on. This latter part (con
 ditional on the match surviving) consists of the value of being in a match of type H, which occurs
 with probability X, or being in a type L match with complementary probability.

 2.4. High-Proficiency Workers. To close the model description, we present the value func
 tions associated with high-proficiency workers:

 (5) UH = Z + pE[p(eH)W'H + (1 -p(0H))U'Hl

 (6) WH = coH + pE[(l-8)W'H + 8U'H\.

 A worker of type H transits from unemployment to employment with probability p (6h) and
 transits from employment to unemployment with probability 8.
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 32  GERVAIS ET AL.

 Again, a large number of inactive firms can potentially maintain vacancies for type H workers.
 The value of maintaining such a vacancy is

 (7) Vh = ~k + pE[q(0H)J'H + (1 - q(0H)) max(V0)].

 Finally, Jh is simply the expected discounted value of flow profits:

 (8) JH=fH-coH + PE[( 1 - 8)J'h + 8 max(v;, 0)].

 Note that the type H market is identical to the standard DMP model.

 2.5. Defining Equilibrium. An equilibrium with Nash bargaining is a collection of value
 functions, V£,,.// , Vh, Jh, Ul, W l, Uh, Wh', compensations, col, «//; and tightness ratios, 0L, Oh,
 such that:

 (1) Workers are optimizing. That is, workers that are matched prefer to remain matched
 instead of be unemployed, Wl > Ul, Wh > Uh, and workers prefer to be of high profi
 ciency as opposed to low proficiency, Wh > WL, Uh > Ul

 (2) Firms are optimizing. That is, the value of maintaining a vacancy is equalized across
 markets and is no less than the value of remaining idle, Vl = Vh = V >0, and firms
 that are matched must prefer to remain matched as opposed to maintaining a vacancy,
 JlJh>V.

 (3) Compensations solve the Nash bargaining problems:

 cot = argmax (W, - Ui)r(Ji - y)1_r,

 for i g {L, //}. where r denotes the bargaining weight of workers.
 (4) The free entry condition is satisfied; that is, V = 0.

 Nash bargaining prescribes a very simple relationship between the worker's surplus, W, — £/,,
 and firm's surplus, in a match. Let S denote the total surplus from a match:

 St = Wi+Ji- Ui, i e {L, H}.

 Under Nash bargaining, the worker and firm receive a constant, proportional share of the total
 surplus, Wj — Ui — rSi and /, = (1 — r)S,-.

 2.6. Discussion. The model has been kept simple for exposition. In particular, we have
 modeled only two types of workers. Type L workers represent labor force members who have
 the potential to upgrade their proficiency via learning-by-doing. Type H workers are those who
 no longer have the ability to do so.

 In our analysis, we focus attention on type L workers. This represents our presumption that,
 in reality, most workers have the ability to increase their proficiency while on the job. In this
 sense, the presence of type H workers represents an analytical device, allowing us to specify a
 well-defined dynamic problem for type L workers, those who represent the majority of labor
 force members in the economy.

 However, our model naturally introduces a source of heterogeneity relative to the standard
 DMP model. That is, although the standard model features heterogeneity in the employment
 status of workers (of the same proficiency), those in our model are also distinguished by the
 scope of their upgrade potential. Given this, it is interesting to consider the implications of this
 heterogeneity in a richer framework. We do this by extending the model to include N worker
 types, where N > 2. This is done in Section 4, where we explore the quantitative properties of
 our model.
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 LEARNING AND LABOR MARKET DYNAMICS  33

 In our exposition, we have specified compensation as being determined by Nash bargaining.
 However, our results do not rely on this assumption. For example, the model's implications
 are identical to a version with wage posting on the part of firms, as in the competitive search
 framework; this is true when Hosios's (1990) condition is met. Furthermore, when the Hosios
 condition is met, the model's equilibrium is efficient. We refer the reader to Appendix A.2 for
 details.

 Note also that our model nests the standard DMP model in two cases. The first is when there

 is no difference in productivity across worker types, that is, fi = ///. In this case, upgrading
 is meaningless, and our model collapses to the standard one. Alternatively, when A. = 0, there
 is no scope for proficiency upgrading for type L workers. In this case, the model features two
 unrelated labor markets, each of which behaves identically to the standard DMP model.

 Finally, we note that although workers have the potential for proficiency upgrading, they
 face no chance of downgrading. Hence, our model would feature a degenerate distribution of
 worker types in steady state, with all workers being of type H. To address this, we introduce an
 exogenous probability of death: in each period, all workers (regardless of employment status
 or proficiency) die with probability (p. These workers are "reborn" to keep the measure of
 workers constant, in a manner to preserve a nondegenerate distribution; we elaborate on this
 in Subsection 4.1 where we discuss the calibration of our model with N > 2 worker types. As
 such, the discount factor, /3, represents a composite of a true subjective discount factor and a
 survival probability, 1—0.

 3. ANALYTICAL RESULTS

 In this section, we provide analytical results characterizing some key properties of our model.
 We begin by characterizing the model's steady-state equilibrium. We then discuss the key
 differences between our model and the standard DMP model and their implications for business
 cycle fluctuations.

 3.1. Characterizing Steady State. Our analysis begins with a useful lemma.

 Lemma 1. In any steady-state equilibrium, if U/, < Uh, then 0l < Oh

 Proof. Subtracting the steady-state value of being unemployed for type L, Equation (1),
 from that of type H, Equation (5), we have

 UH-UL = -l~[fip(eH)(WH - Uh) - Pp(6l)(Wl - UL)].
 1 — p

 Using the free entry condition Vi = VH = 0 together with the value of maintaining a vacancy
 for low- (Equation 3) and high-proficiency workers (Equation 7), it follows that

 u„-uL
 (1 - r)(l -py

 A number of results follow immediately from this lemma, collected in the following corollary.

 Corollary 1. IfU^< Uh, then it follows that p(%) > piPt), q(0H) < q(Qi)J\i > J l, Sh >
 SL,WH-UH>WL-UL,andWH>WL.

 The next proposition establishes that the steady-state value of unemployment is increasing
 in type.
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 34  GERVAIS ET AL.

 Proposition 1. In any steady-state equilibrium, Ui < Uh

 Proof. The proof is by contradiction. Suppose Ui > Uh', from Lemma 1, this implies that
 Ol > &h, so that q(0L) < q(9n)- From the free entry condition, this implies Jh < Ji. From Nash
 bargaining, this implies Sh < $l- Total surplus is given by

 Sh = fH + m - WH + U'H] - UH,

 SL=fL + m - S)[XS'h + (1 - WL] + kU'H + (1 - X)U'L] - UL.

 Using the fact that 5- = S, and U[ = Ui in steady state and gathering terms,

 (9) [1 - >8(1 - 5)(1 - A)](Sl - S„)=fL -fH + m - *) - 1] (UL - UH).

 Both terms on the LHS are positive (the first by construction, the second by assumption;
 (fL — fH) < 0; [y6( 1 - X) — 1] < 0 and (Ui — Uh) > 0 by assumption); therefore, the RHS is
 negative. This is a contradiction. ■

 This result is important for a number of reasons. It ensures that in steady-state equilibrium,
 the assumptions implicit in the model exposition are verified. In particular, a high-proficiency
 unemployed worker would prefer to maintain her type, as opposed to reverting to low profi
 ciency (see Subsection 2.5). From Corollary 2, it also ensures that an employed worker would
 prefer to be of high instead of low proficiency.
 More importantly, it allows us to understand the incentives for job creation in our model

 relative to the standard model. In steady state, the free entry condition of the standard DMP
 model can be expressed as

 k = q(0oMp)P{ 1 — t)Sdmp,

 where the subscript DMP refers to the standard model. Hence, the number of vacancies firms
 post per unemployed worker, 9, depends on the profit conditional on being matched, ,8(1 — r)S,
 which is proportional to total surplus. Total surplus in the standard model can be expressed as:

 Sdmp ~f — z — tkOdmp + fi(l — S)Sdmp,

 where r = r/(l — r). In words, the total surplus from a match consists of a contemporaneous
 surplus plus its continuation value; the contemporaneous surplus is the output from the match
 if), net of the forgone flow value (z) and option value (xkOdmp) of unemployment.
 In our model, the analogous free entry condition must hold in each market:

 (10) k = q(0i)fi(\ - i)Si, ie{L,H}.

 Total surplus for type H matches is identical to the standard DMP model. This is not the case
 for type L matches. In the market for workers with the possibility of learning,

 (11) SL=fL-z- x k0l + 0(1 - <5)Sl + kp [(1 - S)(SH - Si) + (UH - UL)\.
 ' \'

 sA

 Relative to the standard model, the total surplus of a type L match involves the additional term,
 A, which we refer to as the value of learning. This reflects a capital gain due to the fact that
 technological learning may occur when a worker and firm are matched.

 Conditional on learning, there is an upgrade to a high-productivity match in the next period.
 Hence, the total surplus includes the change in the worker's and firm's values, weighted by
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 LEARNING AND LABOR MARKET DYNAMICS  35

 P and X. With probability (1 — 5) the match survives, so that learning reflects a change in the
 matched value of both the worker and the firm. With probability <5 the match is separated, and
 the learning is reflected only in a change in the unemployed worker's value. Hence,

 A = Xp [(1 - S)(WH - WL+JH - Jl) + S(Uh- Ul)]

 = X/3 [(1 - S)(SH - SL) + (UH ~ UL)] ■

 Moreover, given Proposition 1 and Corollary 1, 1/# — Ul > 0 and Sh — Sl > 0, so that the value
 of learning is positive, A > 0.

 3.2. Comparative Statics. In this subsection, we provide comparative statics results for the
 model's steady state. These are useful in providing insight into the business cycle properties of
 our model.

 The equations governing equilibrium job creation—more specifically, market tightness—are
 the free entry conditions. From (10), it is clear that the response of market tightness to a shock
 depends on the response of total surplus. Intuitively, a shock that causes total surplus to rise
 implies a rise in the flow of profits to a matched firm. Since there is free entry, firms respond by
 creating more vacancies per unemployed worker. Job creation occurs until the point where the
 rise in profit is offset by the fall in the probability that any given vacancy is filled.

 The next proposition relates to the model's response to changes in the learning rate. Consider
 total surplus in type L matches with the possibilityof learning. From Equation (11), it is clear
 that the effect of a change in X on total surplus operates through its influence on the value of
 learning, A. We first establish that Sl is increasing in the learning rate.

 Proposition 2. A rise (fall) in X causes Sl to rise (fall).

 The proof is provided in Appendix A.3. The intuition is straightforward. An increase in
 the learning rate increases the value of learning, A > 0, which is positive (see the previous
 subsection). As the probability that the match upgrades from low to high proficiency increases,
 the expected profit rises as well; that is, the "upside risk" of the match has improved. This implies
 an increase in total surplus. Via free entry, this causes a rise in 6l'- job creation of matches with
 the possibility of upgrading rises. This steady-state result extends to the stochastic environment
 that we study in Section 4: A positive shock to X causes 0l and job creation to rise, and vice
 versa.

 It is also straightforward to see that total surplus in high-productivity matches is unaffected
 by shocks to the learning rate. As discussed in Section 2, the H-type market is simply a standard
 DMP model, and independent of the type L market. Hence, job creation in this market is
 unresponsive to shocks to the learning rate, A..

 4. NUMERICAL RESULTS

 In this section, we provide numerical results for our model. Subsection 4.1 discusses the
 calibration of the model. In Subsections 4.2 and 4.3.1, we present business cycle statistics for the
 postwar U.S. economy and demonstrate that the standard DMP model does poorly in replicating
 them. Subsection 4.3.2 presents the results for our model, where we illustrate why our model
 improves upon the standard DMP model in terms of the volatility of unemployment relative to
 that of productivity as well as the correlation between these two variables.

 4.1. Calibration. As discussed in Subsection 2.6, in our numerical analysis we consider the
 implications of the model with richer heterogeneity, that is, with N > 2 proficiency levels or
 types. In terms of notation, let/, denote the level of output produced in a match between a firm
 and worker of type i, where i = 1,..., N. For simplicity, we assume that a worker increases her
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 36  GERVAIS ET AL.

 proficiency by one level at a time, with X still denoting the probability, while matched, that a
 worker of type i < N upgrades to type i+ 1. All other aspects of the model remain unchanged.

 The characterization of the highest-proficiency, type N, market is identical to that of the high
 proficiency market summarized by the value functions (5)-(8) (obviously, with the //-subscripts
 replaced by APs). The value functions for all other workers and firms with the potential for
 technological learning (types i = 1,..., N — 1) are given by

 (12) Ui=z+mp(w+a - pmm.

 (13) w, = <u,- + PE[X[(1 - 8)W'i+1 + 8U'i+l] + (1 — A) [(1 - S)W[ + St/;]],

 (14) Vi = -k + t}E[q(Oi)J[},

 (15) J, = fi -cOi + pE[( 1 - 8)[XJ'i+l + (1 - X)/;]].

 Many of our model features are standard to the DMP literature, so our calibration strategy is
 to maintain comparability wherever possible. As in Hagedorn and Manovskii (2008), the model
 is calibrated to a weekly frequency. As such, the discount factor is set to = 0.999 to accord
 with an annual risk-free rate of 5%.

 We assume that the matching function in each market is Cobb-Douglas, so that

 /x(6>) = 6q(6) = 0*.

 We specify a = 0.4; this is near the midpoint of the range of empirical estimates of the aggregate
 matching function found in the data.13 It is important to note, however, that although these
 estimates are derived to match moments in the aggregate data, we impose this common value
 of a across each of our (type-specific) matching markets.

 For comparability with previous work, we specify the parameter in the Nash bargaining
 problem as r = 1 — a. As in the standard DMP model, this implies that the Hosios (1990)
 condition is met and the equilibrium is efficient (see Appendix A.2 for details).

 The vacancy cost, k, pins down the aggregate job finding rate, p(0). We target a weekly
 job finding rate of p(6) = 0.139, which corresponds with a monthly rate of 45%, as in Shimer
 (2005a).14 Given this aggregate job finding rate, we set 8 = 0.0081 to correspond with a steady
 state unemployment rate of 5.5%.

 Following Hall and Milgrom (2008), Mortensen and Nagypal (2007), and Pissarides (2009),
 we specify z, the flow value of unemployment, to equal 73% of the average return to market
 work. The interpretation is that z is composed of two components: a value of leisure or home
 production, and a value associated with unemployment benefits. As in their work, the return to
 leisure/home production is equated to 43% of the average return to market work. Given this
 target, the model's Nash bargained compensation, and the steady-state distribution of worker
 types, we set z = 0.444. This implies an unemployment benefit replacement rate ranging from
 roughly 40% for type 1 workers and 20% for type N workers; this accords with the range of
 replacement rates reported by Hall and Milgrom (2008).

 Relative to the standard DMP model, our model adds a number of new parameters:
 X, and the process of "death and rebirth." We normalize= 1. For the remaining parameters,

 13 See, for instance, Petrongolo and Pissarides (2001), Shimer (2005a), Mortensen and Nagypal (2007), and
 Brugemann (2008).

 14 As discussed in Shimer (2005a), note that the exact value of k is irrelevant. That is, by introducing a multiplicative
 constant, f, to the matching function, k can be scaled by a factor of x and £ by a factor of xa, leaving the job finding rate

 unchanged.
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 Table 1

 business cycle statistics: u.s. data and various models

 U.S. Standard Tech. News News News

 Data DMP Learning One Qtr One Year Two Years

 Standard deviations relative to labor productivity
 Unemployment 9.34 1.21 5.54 1.32 1.33 1.33
 Job finding rate 6.05 1.32 6.18 1.44 1.44 1.44
 Tightness ratio 18.20 3.21 13.80 3.61 3.61 3.61

 Correlations with labor productivity
 Unemployment —0.41 —0.96 —0.31 -0.99 -0.99 -0.99
 Job finding rate 0.44 1.00 0.22 0.96 0.96 0.96
 Tightness ratio 0.39 1.00 0.22 0.96 0.96 0.96

 Notes: AH data are logged and HP filtered. U.S. data: 1953:I-2009:IV, various sources; see text. Models: Quarterly
 averages of simulated data, 250,000 observations at weekly frequency.

 we follow the calibration strategy of Ljungqvist and Sargent (1998, 2004) and den Haan et al.
 (2005).15 Specifically, we choose these parameters to match observations from the empirical
 life-cycle earnings profile estimated by Murphy and Welch (1990) and others. First, in the data,
 the maximal lifetime wage gain for a typical worker represents an approximate doubling of
 earnings. Second, in the data, this doubling occurs after the typical worker has accumulated
 approximately 25 years of experience. Given this, we choose N = 25 and set the difference
 between the lowest and highest productivity at/,v//i = 2. For simplicity, we follow Ljungqvist
 and Sargent (1998) and specify all productivity levels to be equally spaced, so that /i = 0.5,
 f2 = 0.5208,..., /a?-i = 0.9792, and fs = 1. We set X = 0.0185, so that it takes the average
 worker 54 weeks (or approximately one year) to realize a proficiency upgrade; in this way, it
 takes the average worker 25 years to progress from the lowest to highest proficiency level.
 Third, in the data, the average worker's earnings cease to increase from the age of approxi

 mately 50 years onward. In the model, the value of 0 determines the proportion of the workforce
 that no longer has the potential for proficiency upgrading. As such, we calibrate 4> so that 25%
 of workers are type N in steady state. This corresponds to the average fraction of the labor force
 over the age of 50 years in postwar U.S. data. Finally, we must specify how "dead" workers are
 "reborn" in order to maintain a constant unit mass of workers. For symmetry, we do this so
 that in the model's steady state, there is an equal measure of workers of types 1 through N — 1
 (specifically, 75%/24 = 3.13% of each type).16
 To investigate the quantitative predictions of our model, we log-linearize around the steady

 state, simulate to obtain 250,000 observations at the weekly frequency, then time-aggregate
 these observations to obtain quarterly data.17 Following Shimer (2005a), we Hodrick-Prescott
 (HP) filter the (logged) data with smoothing parameter 105 to obtain second moment statistics.

 4.2. U.S. Business Cycle Facts. Column 1 of Table 1 presents selected business cycle statistics
 for the U.S. economy, 1953:I-2009:IV. To isolate cyclical fluctuations, we HP filter the data in
 the same manner as the model simulated data. See Appendix A.l for detailed information
 on data sources used throughout the article. Here, we highlight a number of well-established

 15 Though the emphasis of their work is very different, these papers also study a DMP framework in which workers face

 a stochastic process of productivity upgrading (and downgrading). In particular, their papers focus on the implications
 of "turbulence" in the form of a high depreciation rate on productivity or "human capital" on steady-state levels of
 unemployment. As such, they do not characterize the impact of learning and upgrading on incentives for job creation
 or the implications for cyclical fluctuations.

 16 As a point of reference, we note that this is a close approximation to the observed age distribution of the labor
 force. During the postwar period, the average fraction of labor force participants in five-year age bins between the ages
 of 20-24 and 45^49 ranges from a low of 10.3% to a high of 12.5%.
 17 We have also solved the model by obtaining (numerically) exact solutions for the case when the exogenous shock

 is assumed to follow a finite state Markov process. The results are essentially identical using either the approximate,
 log-linear solution method or the exact, nonlinear approach.
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 observations and discuss their implications for the quantitative analysis of search-and-matching
 models.

 The first is that the aggregate unemployment rate is very volatile over the business cycle
 relative to labor productivity. The standard deviation of unemployment relative to that of
 labor productivity is 9.34; unemployment is nearly an order of magnitude more volatile than
 productivity. Hence, models that rely on shocks to productivity as the driving force require
 strong amplification.

 Second, we report statistics relating to the cyclically of job finding since this is the source
 of all unemployment volatility in the model.18 Since the job finding rate, p(0), is a function of
 the vacancy-unemployment (or tightness) ratio, 9, we present statistics for this variable as well.
 Column 1 of Table 1 indicates that both the job finding rate and tightness ratio are very volatile
 over the cycle. Relative to labor productivity, the standard deviations of these variables are 6.05
 and 18.20, respectively.

 Moreover, there exists a robust relationship between unemployment and vacancies over the
 business cycle—the "Beveridge Curve." In postwar U.S. data, this correlation is highly negative
 at -0.89. This summarizes the fact that recessions are periods when firms stop hiring (vacancies
 fall) and unemployment soars; booms are periods when hiring is brisk and unemployment is

 Finally, we highlight the correlation between labor productivity and unemployment. Labor
 productivity provides a measure of the return to work effort, whereas unemployment measures
 work effort itself. Over the business cycle, these two measures are only mildly (negatively)
 related, with a correlation of —0.41; periods when work effort rises and unemployment falls
 are only weakly associated with higher productivity. This weak relationship is mirrored in
 the correlations of labor productivity with both the job finding rate (0.44) and the vacancy
 unemployment ratio (0.39). These weak correlations are informative regarding the relevant
 business cycle impulses that should be incorporated in our models.

 4.3. Cyclical Dynamics.

 4.3.1. Technology shocks. We first review the properties of business cycle fluctuations in
 the standard DMP framework driven by technology shocks. Specifically, we consider AR(1)
 disturbances to the productivity of all worker-firm matches. This is done by setting {fi}?=l = f
 in our model, and specifying:

 ft-f exp(xf), x, = pfxt-1 + et.

 Calibrating the technology shock process is difficult since productivity data are not available at
 the weekly frequency, and extrapolating from quarterly data is problematic. As such we choose
 the persistence of the shock to match the correlation between vacancies and unemployment in
 simulated data, which we hereafter refer to as the Beveridge curve. This requires p/ = 0.981.
 As it is common in log-linearized models around the steady state such as ours, our model's
 implications for relative volatilities and correlations between different variables are invariant
 to the variance of the shock innovation. As such we concentrate on these statistics in what
 follows.

 The results for the standard DMP model are presented in column 2 of Table 1. The model
 delivers a standard deviation of unemployment relative to productivity of 1.21, which is approx
 imately eight times smaller than in the data. This large discrepancy between theory and data has
 been discussed extensively in the literature. Since the model's unemployment fluctuations are

 18 Job separations in the model are constant at the exogenous rate S. This simplifying assumption accords with the
 findings of Shimer (2005a) and Hall (2005), namely, that the primary determinant of unemployment fluctuations is
 variation in the job finding rate. See also Fujita and Ramey (2009) and Elsby et al. (2009). They arrive at similar
 conclusions, though with a slightly larger contribution to job separation rates.
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 LEARNING AND LABOR MARKET DYNAMICS  39

 driven solely by the response of job creation, it is not surprising to see that the model performs
 poorly with respect to the job finding rate and the tightness ratio as well. On these dimensions,
 the model misses by factors of approximately 5 and 6, respectively.

 The standard DMP model also dramatically overpredicts the correlation of labor productivity
 with labor market measures. Consider first the correlation with the job finding rate and the
 tightness ratio. These are "jump" variables in the model, and the correlation with productivity
 is perfect. In the data, these correlations are far from perfect. Unemployment is a state variable
 in the model. As such, its correlation with productivity is smaller than —1, but still very close
 at —0.96. In the data, this correlation is only —0.41. For Mortensen and Nagypal (2007), this
 evidence points to the importance of other driving forces that are omitted from the standard
 analysis focusing solely on technology shocks. In the next subsection, we illustrate how shocks
 to the technological learning rate represents a potentially important omitted shock.

 4.3.2. Technological learning rate shocks. In this subsection, we document the cyclical prop
 erties of our benchmark model when fluctuations are driven by shocks to the technological
 learning rate, k. We model the learning rate as following an AR(1) process:

 k, = k exp(x,), xt = pxXt—\ + et.

 As with the calibration of the technology shock process in Subsection 4.3.1, the calibration of
 the learning rate shock process is problematic. This is because there are obviously no empirical
 data on the learning rate. As such, we pursue the same strategy as that of Subsection 4.3.1;
 namely, we calibrate p,_ so that the model's correlation between vacancies and unemployment
 matches that of the data. This allows us to maintain comparability of our analysis of learning
 rate shocks to that of technology shocks. Matching the Beveridge Curve requires specifying
 Px = 0.970.19

 The results are presented in column 3 of Table 1. Learning rate shocks generate substantial
 amplification in labor market variables. The volatility of unemployment relative to productivity
 is more than four times that of the standard DMP model (displayed in column 2); the same is true
 regarding the volatility of the job finding rate and the tightness ratio, relative to productivity.20
 Hence, our model makes substantial progress toward resolving the unemployment volatility
 puzzle, especially when viewed from the perspective of cyclicality in job creation.21

 Moreover, our model makes substantial progress toward resolving the unemployment
 productivity correlation puzzle. The model generates a correlation between these two variables
 of —0.31. This is close to the value of —0.41 observed in the data and far from the value near

 — 1 generated by the standard DMP model driven by technology shocks.
 This is mirrored in our model's ability to generate realistic correlations of labor productivity

 with the job finding rate and the tightness ratio. In the data, these correlations are 0.44 and

 19 As discussed previously, the model's predictions for relative volatilities and correlations are invariant to the
 variance of the shock process. As such, we need not calibrate the standard deviation of the innovation. This leaves open
 the question of what fraction of the observed volatility of labor productivity (and thus of all other variables) learning
 rate shocks account for, relative to other sources of business cycle variation. As a reference point, in order for learning
 rate shocks to account for all of the variance of labor productivity, the standard deviation of the innovation would equal
 ae = 0.185. To quantify this, note that the steady-state learning rate is calibrated so that the average employed worker
 realizes a productivity upgrade every 54 weeks. In the stochastic model, the 68% coverage region around the median
 learning duration would range from approximately six months to just over two years.

 20 These results are not due to the mechanisms stressed by Hagedorn and Manovskii (2008). We verify this by solving
 a version of our benchmark model (with N = 25) when driven solely by conventional technology shocks. This version
 of the model features the same magnification result as in the standard DMP model. For brevity we do not present the
 results here, but they are available from the authors upon request.

 21 In simulation experiments, we explore the robustness of our findings with respect to the value of N. We find that
 the model's volatility of unemployment declines monotonically as N increases from 2 to 25, but "flattens" substantially
 for N > 10. For instance, between N = 10 and N = 25, the standard deviation of unemployment relative to productivity
 changes only from 5.62 to 5.54.
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 Notes: Response to positive, one standard deviation shock. Solid (blue) line: unemployment; dashed (red) line: labor
 productivity.

 Figure 1

 impulse response functions! standard dmp and technological learning models

 0.39, respectively; in the model, they are 0.22. Learning rate shocks effectively decouple the
 dynamics of productivity from that of the labor market. This implies business cycle behavior
 that is closer to that observed in the U.S. data, relative to models where fluctuations are driven
 by shocks to technology.
 To better understand our model relative to the standard DMP model, we present impulse

 response functions for unemployment and labor productivity in Figure 1. The vertical scale of
 both panels is identical to facilitate comparison across models.
 Panel A presents responses for the conventional business cycle impulse, specifically, the

 response to a positive one standard deviation technology shock. Technology shocks have a
 direct impact on matched workers' productivity. Hence, labor productivity jumps upon impact
 of the shock, gradually declining to steady state thereafter. This shock implies an immediate
 impact on firm profit. From the free entry condition, vacancies respond immediately. Because
 of the high empirical job finding rate that the model is calibrated to, unemployment responds
 quickly, peaking 15 weeks (or about one quarter) after the impact period of the shock.
 These responses clearly illustrate the shortcomings of technology-shock-driven cycles in the

 DMP model. Because the peak response of both unemployment and labor productivity occur
 in the short run, this implies a counterfactually strong correlation of the two variables over the
 business cycle. Moreover, the response of unemployment is of the same order of magnitude as
 that of productivity. Hence, as discussed extensively in the literature, the model displays much
 weaker amplification of unemployment, relative to that observed in the data.
 Panel B displays the response to a positive one standard deviation learning rate shock in our

 model. The jump in the learning rate creates a jump in the surplus from a match. From the free
 entry condition, vacancies respond immediately and unemployment soon after. The response
 of unemployment peaks 16 weeks (about one quarter) after the impact period of the shock.
 In contrast to a technology shock, a learning rate shock has only an indirect effect on labor

 productivity via the type composition of the workforce. After a positive shock to X, the economy
 wide upgrading rate rises. This causes productivity to rise as workers shuffle from lower to
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 higher types at a faster rate. However, because the learning process must still be undertaken,
 the dynamic response of productivity is persistent and only peaks about 120 periods (or about
 two years) after the shock. As a result, our model naturally decouples the dynamics between
 unemployment and labor productivity. While the response of unemployment peaks in the short
 run, productivity peaks in the long run. Hence, learning rate shocks generate a low correlation
 between these two variables, as observed in the data.

 Moreover, learning rate shocks generate a substantially stronger effect on unemployment
 than on productivity. To understand the response of unemployment, consider the version with
 only two types, where the return to job creation, namely, total surplus in type L matches, is
 displayed in Equation (11). This surplus is determined largely by the value of learning, A, which
 represents the expected future profit gain from an upgrade. Because k shocks have a direct
 impact on the learning value, they have strong effects on job creation and unemployment.

 On the other hand, the effect of learning rate shocks on labor productivity is quantitatively
 weak. This can be seen analytically from the log-linearized response of productivity to a A.
 shock. Given the model's timing, there is no impact in the period of the shock, since upgrading
 is reflected in output with a one period lag. With N — 2, the response of labor productivity in
 the following period, LPt+1, is given by

 LPt+1 = X
 nL + nH

 [k(l - <5)]A, - (°^- ) ht
 nH 7 \ nL

 Here, n, (w,-) denotes the steady-state measure of employed (unemployed) workers of type i,
 6i is the steady-state tightness ratio in market L, X is a constant (a function of parameters and
 steady-state values), and the circumflex represents log-linearized deviations from steady state.
 The first term in the curly brackets indicates the effect of the k shock. Its strength depends
 on the steady-state distribution of worker types, (hl + nn)/nH (the larger the fraction of L
 types with the potential to upgrade, the bigger the effect), and importantly, the level of the
 steady-state learning rate, as captured by the term in square brackets. In order to account for
 life-cycle earnings dynamics, our calibration requires a small value for k. Hence, the response
 of labor productivity to a learning rate shock is quantitatively small.22

 4.3.3. Learning rate shocks and "news shocks." In this section, we provide evidence for
 the relevance of learning rate shocks—and, in particular, their decoupling of productivity and
 unemployment dynamics—for business cycle analysis by relating our model's results to the
 recent "news shock" literature.

 In a recent paper, Beaudry and Portier (2006) use a number of structural VAR techniques to
 identify shocks to productivity in U.S. data. They find that shocks to long-run productivity have
 essentially no effect on productivity upon impact.23 Instead, productivity is found to respond in
 a gradual, persistent manner. On the other hand, measures such as the stock market index and
 employment are found to respond immediately (i.e., within the first quarter) to these long-run
 TFP shocks.

 Technological learning rate shocks generate dynamic responses that share these features.
 Hence, shocks to the learning rate provide a theoretical interpretation of empirically identified

 22 Deriving log-linearized expressions for labor productivity at longer time horizons is difficult, given the need to
 track the dynamic response of the distribution of workers across types and employment status. Note also that in the
 equation above, the second term in curly brackets is negative. This reflects the fact that a positive X shock generates a
 response of job creation for L types (and no response in creation for H types). Hence, the distribution of employment
 shifts toward low-proficiency workers. This negative composition effect offsets the positive effect of faster upgrading
 on the response of labor productivity. However, in our numerical experiments, this offsetting effect is small.

 23 In their benchmark bivariate system, shocks identified to have a permanent impact on productivity are found to
 have a small, negative effect on productivity upon impact (though the response is statistically indistinguishable from
 zero). And interestingly, shocks to stock market prices that are orthogonal to productivity upon impact generate a
 nearly identical dynamic response to TFP.
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 Notes: Response to positive, one standard deviation shock.

 Figure 2

 impulse response functions to a positive learning rate shock

 "news shocks." This is illustrated in Figure 2, where we plot impulse response functions to a
 learning rate shock. In Panel A, we display the response of the model's stock price index. We
 construct this index as a weighted average of the present discounted value of firm profits in all
 match types, {//Jjlj, where the weights are the proportions of each type in the model's steady
 state. A positive X shock causes the value of type i — 1,..., N — 1 matches to jump immediately
 as the "upside risk" of these matches increases.24 Hence, the stock price index jumps upon
 impact of the shock; the response gradually returns to zero as X returns to its steady-state value.
 Panel B displays the response of the aggregate job finding rate. The learning rate shock causes

 firm surplus for all type /' < N firms to jump upon impact. From the free entry condition, vacan
 cies and job finding rates jump. Panel C displays the response of the aggregate unemployment
 rate. Unemployment is a state variable and therefore does not respond in the period of the
 shock, but responds very quickly after impact. Hence, economic activity, as measured by stock
 prices, job creation, and unemployment, responds within the quarter of the learning rate shock.
 In contrast, labor productivity responds in a persistent, protracted manner. This is evidenced

 in Panel D. Shocks to the learning rate induce gradual changes in the productivity composition
 of the workforce. As a result, the productivity response is smooth, peaking approximately
 120 periods—or over two years—after the initial shock. Hence, the productivity response to
 learning rate shocks is observed in the long run. These features are consistent with the responses
 identified by Beaudry and Portier (2006).
 Finally, although our model conforms with the empirical evidence for news shocks, the the

 oretical mechanism embodied by learning rate shocks is distinct from those in recent models.
 In those papers (e.g. Beaudry and Portier, 2007; Jaimovich and Rebelo, 2009; den Haan and

 24 Recall that the value of type N matches is unaffected.
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 Kaltenbrunner, 2009), news shocks are modeled as signals of technology shocks that are to
 arrive a number of quarters in the future. Upon arrival, these innovations immediately affect
 productivity. In contrast, shocks to the learning rate represent the arrival of innovations that
 vary in their ease of technological learning; their effects on labor productivity are realized in a
 delayed manner, via the process of learning-by-doing.

 This distinction is not just a matter of interpretation: Although learning rate shocks make
 progress on rationalizing labor market dynamics in the DMP framework, conventionally mod
 eled news shocks do not. This is illustrated in the rightmost columns of Table 1, where news
 shocks are introduced in the standard DMP model in the usual way—as the arrival of infor
 mation at date 0 of a change in productivity in period t.25 Column 4 presents results for a one
 quarter ahead (? = 13 weeks) news shock, whereas Column 5 presents the case of a one-year
 ahead (? = 52 weeks) news shock. The results of Beaudry and Portier (2006) indicate that the
 long-run effects of news shocks on productivity are evidenced at a horizon of 8 to 10 quarters (or
 about two years); this coincides with the horizon of maximal effect in our model with learning
 rate shocks (see, for instance, Panel D of Figure 2). Given this, column 6 presents the results
 for a two year (t = 104 weeks) ahead news shock.

 As is obvious, the amplification of unemployment fluctuations relative to productivity is es
 sentially identical to the case with standard technology shocks, discussed in Subsection 4.3.1,
 and presented in Column 2. To understand this, Figure 3 presents impulse response func
 tions for unemployment and labor productivity to a positive one standard deviation news
 shock. Panel A presents the case for a one quarter ahead news shock and Panel B for a
 one year ahead shock. A conventional news shock has a direct impact on productivity at the
 time the technology arrives. Vacancy creation and, therefore, unemployment respond prior to
 the period of arrival. Nonetheless, the maximal response of unemployment is of the same order
 of magnitude as the response of productivity; indeed, the maximal response of unemployment is
 essentially identical to the case for standard technology shocks presented in Panel A of Figure 2.
 Hence, conventionally modeled news shocks make little progress in solving the unemployment
 volatility puzzle.

 Similarly, conventional news shocks make no progress on the unemployment-productivity
 correlation puzzle; the correlation between these variables remains near —1 in columns 4
 6. To understand this, we refer again to Figure 3. Although vacancies and unemployment
 begin to respond prior to the arrival of the technological change, the peak responses of both
 unemployment and productivity are essentially simultaneous. As a result, conventional news
 shocks imply a counterfactually strong correlation of the two variables.

 Hence, the manner in which news shocks are modeled is important. Technological learning
 rate shocks generate "news shock" dynamics and help rationalize the two labor market puzzles
 news shocks modeled as the arrival of information of shocks to future productivity make little
 to no progress on the puzzles.

 Finally we note that our model, like almost all models driven solely by news shocks, cannot
 account for the fact that in the U.S. data labor productivity leads unemployment by two quarters.
 Although news shocks have been found to account for a substantial fraction of business cycle
 variation in U.S. data, we view this lead-lag evidence as suggesting the importance of other
 shocks.

 4.4. Learning Rate Shocks and the Return to Experience. Our analysis emphasizes the impor
 tance of learning rate shocks in accounting for the cyclical behavior of aggregate unemployment
 and productivity. At its core, the idea is that individual workers gain technological proficiency
 and productivity while on the job, and that the rate at which this happens varies over the busi
 ness cycle. Shocks to the learning rate tilt the life-cycle earnings profile, making it steeper when

 25 For brevity, we do not present details regarding this version of the model and, instead, make them available upon
 request.
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 A: one quarter ahead
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 Notes: Response to positive, one standard deviation shock. Solid (blue) line: unemployment; dashed (red) line: labor
 productivity.

 Figure 3

 impulse response functions: conventionally modeled news shocks

 the shock is positive and flatter when the shock is negative. Hence, our model puts emphasis on
 the return to labor market experience and its cyclical properties.
 Relatively little empirical work has been devoted to identifying the cyclicality of the return

 to experience. A notable exception is that of French et al. (2006). Their work focuses on the
 evolution of employment and earnings for a cohort of young workers (18- to 28-year-olds) in
 the Census Bureau's Survey of Income and Program Participation (SIPP). Using wage data for
 continuously employed workers who remain with the same employer, they are able to identify
 time variation in the return to experience. French et al. (2006) find this return to be strongly
 procyclical. In their baseline specification, a 1% rise in the unemployment rate generates a 1.1%
 fall in the return to experience, with a two standard deviation confidence band of 0.5%-1.8%.26

 26 French et al. (2006) also consider a second specification that attempts to control for a time effect that is common
 to all workers. This common time effect might capture, for instance, aggregate technology shocks that affect all wages,
 independent of a worker's experience. In this case, the cyclically of the return to experience is significantly muted. But
 as French et al. (2006) point out, identifying this aggregate time effect is not at all straightforward in their empirical
 framework. They choose to proxy for this using the wages of new labor market entrants, with the idea that workers
 with no experience are not affected by changes in the return to experience. This identification assumption might hold,
 for instance, in a model with static wage determination, where wages are determined only by current marginal product.
 However, this identification assumption is clearly violated in our model. With Nash bargaining, wages are forward
 looking and respond to changes in match surplus due to changes in the learning rate; and this is true for workers with
 no experience (type L workers in the simple N =2 version, type 1 workers in the N > 2 version). As such, we believe
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 LEARNING AND LABOR MARKET DYNAMICS  45

 In light of this, we perform the same exercise in simulated data from our model. Specifi
 cally, we track the wages of a cohort of young workers over a 25-year period; this is done by
 "interviewing" the workers at four-month intervals (the same frequency of interview waves
 in the SIPP).27 As in French et al. (2006), we estimate the return to experience at any point
 in time as the (cross-sectional) average log wage change from the previous interview, for
 those who were continuously employed. Repeating this period-after-period over the 25 years
 obtains a time series for the return to experience. We then determine its cyclically by re
 gressing it on a constant, time trend, and the aggregate unemployment rate, as in French
 et al. (2006).

 We repeat this simulation exercise 100 times and report the median coefficient estimate. In
 our model, a 1% rise in unemployment generates a 1.6% fall in the return to experience. This
 is in line with the point estimate of 1.1% and within the two standard deviation confidence
 band reported in French et al. (2006). It is worth noting that our model analysis assumes that
 all fluctuations in unemployment are due to shocks to the learning rate. In reality, there are
 likely to be other shocks contributing to the cycle that do not affect the return to experience.28
 Hence, the inclusion of such shocks in a more elaborate model would also dampen the estimated
 covariance of unemployment with the return to experience.

 5. CONCLUSION

 In this article, we have focused on two key labor market observations in postwar U.S. data. The
 first is that unemployment is very volatile over the business cycle relative to labor productivity.
 The second is that cyclical fluctuations in unemployment and productivity are only mildly
 negatively correlated. The canonical model of equilibrium unemployment, when driven by
 technology shocks, fails to account for either of these facts.

 We propose a model of technological learning that makes progress on both shortcomings.
 Specifically, we construct a tractable search-and-matching model in which (a) it takes time for
 workers to become fully proficient with technology, and (b) shocks to the speed or ease of
 learning-by-doing are a source of business cycle fluctuations. Quantitative analysis indicates
 that our model generates substantial amplification in labor market variables and delivers a
 correlation between unemployment and labor productivity that is close to the data. Our model
 also provides a new theoretical interpretation of news shocks. Specifically, learning rate shocks
 generate long-run fluctuations in productivity that are associated with short-run fluctuations in
 stock prices and unemployment. Crucially, our model does this while simultaneously making
 progress on the unemployment volatility puzzle and unemployment-productivity correlation
 puzzle. By contrast, conventional models of news shock-driven business cycles make essentially
 no progress on these puzzles.

 future empirical work attempting to disentangle common time effects from the return to experience would be of clear
 value.

 27 Our cohort of workers is initialized by presuming that all workers enter the labor force at age 18 as unemployed,
 type i — 1 workers. Applying the steady-state job finding, job separation, and learning rates to these workers for a
 six-month period allows us to generate the distribution of 18-year-olds across employment statuses and types. The
 distribution of 19-year-olds is obtained from a further 12 months of transitions for the initial cohort, and so on, until
 we have distributions for workers of all ages between 18 and 28 (the same age group studied in French et al., 2006).
 These workers of different ages are then used to generate a representative SIPP cohort by weighting them according
 to the age distribution of 18- to 28-year-olds in the U.S. labor force, as found in 1984 (the initial year of the SIPP) in
 the Current Population Survey (CPS).

 28 For instance, although our model does well in replicating the volatility of job creation, it understates that of
 unemployment. Recent work attributes one quarter to one third of unemployment variability to cyclical job destruction.
 Hence, one could imagine shocks to job separation rates as generating fluctuations in unemployment that are unrelated
 to the return to experience.
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 APPENDIX

 A. 1. Data Sources. Our measure of unemployment is the quarterly average of the seasonally
 adjusted monthly series constructed by the Bureau of Labor Statistics (BLS) from the CPS. Our
 measure of labor productivity is (quarterly, seasonally adjusted) output divided by employment
 in the nonfarm business sector as constructed by the BLS Major Sector Productivity program.
 To construct the job finding rate, we follow the approach of Shimer (2005a, 2005b, 2012), using
 monthly data on employment, unemployment, and short-term unemployment tabulated from
 the CPS. We use vacancy data provided by Barnichon (2010), divided by unemployment, to
 construct the tightness ratio. Specifically, we use his "composite Help-Wanted Index," which
 combines information on the number of newspaper and online job advertisements compiled by
 the Conference Board.

 Quarterly data on aggregate output and its expenditure components are obtained from the
 National Income and Product Accounts. Specifically, real output, consumption, and investment
 refer to seasonally adjusted gross domestic product, personal consumption expenditures, and
 gross private domestic investment, respectively, expressed in chained 2005 dollars. Finally,
 employment refers to the quarterly average of the seasonally adjusted monthly series for the
 civilian employment-population ratio, constructed by the BLS from CPS data.

 A.2. Efficiency. To show that our equilibrium is efficient, we derive equations that fully
 characterize the solution to a planner's problem and show that the same equations characterize
 equilibrium under Hosios's (1990) condition. In a separate appendix available from the authors'
 webpages, we show that our equilibrium also obtains in a directed search environment in which
 firms post wages.

 A.2.1. Compensations. To begin, we derive the compensations from generalized Nash
 bargaining. These are required for the characterizations given below. The market for high
 productivity workers is identical to that of the standard DMP model. Therefore, the compen
 sation in such matches is entirely standard:

 To obtain the compensation in low-productivity matches, begin with proportionality of sur

 (A.l)  = r(fH + k0h) + (1 - r)z.

 plus:

 (1-z)(Wl-Ul) = tJl

 Worker surplus can be expressed as

 (WL — Ul) — coi - z +ma - S)[k (W'H - U'H) + (1 - k) (W'L - U'L) ]

 -P(0l)(W'l-U'l) + \(U'h-U'l)},

 or

 (1 - r) (WL - UL) - (1 - t)(col - z) +PE{( 1 - S)r[XJ'H + (1 - k)J'L]

 -rp(eL)J'L + (l-T)k(U'H-U'L)}.

 Equating this with tJi and using free entry, we get

 (A.2)  COL = r(fL + k0l) + (1 - T)z - (1 - r)\fSE [U'H - U'L].
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 LEARNING AND LABOR MARKET DYNAMICS  47

 The last term is (1 — r) times the worker's value of learning.
 The worker's value of learning can be simplified by noting that

 UH-UL = pe[p (e„) (W'H -u'„)-p (eL) (w'L - u'L) + [u'H - u'L]].

 Using the proportionality of surplus and the free entry condition again, we get

 UH-UL = xk(9h ~ Ol) + PE[U'h - U'L]
 00

 (A.3) =tkEJ2PsKS-0+l)>
 S=0

 where r = r/(l - r), 0(+o = 9t, 0+1 = 0+2 = ff[, and so on.

 A.2.2. A planner's problem. Let V(«l, ur, nL, nH) denote the value function of the planner
 who inherits unemployment ul for type i e {L, H) and employment n, for type i e {L, //}:

 V(uL, uh, nL, nH) = max {(uL + uH)z + nLfL + nHfH

 - k{ulGl + uh9h) + pv(u'L, u'H, n'L, n'H)},

 subject to the following laws of motion:

 u'L > (1 - p(9l))ul + (1 - X)8nL,
 u'h > (1 - P (9h))uh + A.SnL + SnH,
 n'L < p(9L)uL + (1 - A)(l - S)nL,
 n'H < (1 - S)nH + p(9H)uH + A.(l - S)nL.

 Setting ul + uh + ni + nu = 1 and letting XUt be the multiplier on the law of motion for w,
 and X„t be the multiplier on the law of motion for the first-order conditions with respect to
 9i, i e {L, //}, are

 —k + p'(9l)(XUl + X„L) — 0,

 —k + p'(9h)(Xuh + X„H) — 0.

 The first-order conditions with respect to u■ and n't, i e {L, H], are

 Uh' nL' nli) =

 f3Vnj(Uj^, ftl> "//) ~^-n, = o.

 Finally, the envelope conditions are

 VUL = z - k9l - xUL(1 - p {6L)) + X„Lp(9L),

 VUH = z- k9h - xUH{1 — p(6h)) + K„p(9h),
 VnL =fL~ KL(l ~ k)S - XUhX8 + v(i - *)(i - 8) + KhK 1 - S),
 VnH =fH- + ^nH( 1 - <5)
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 48 GERVAIS ET AL.

 Combining the first-order and envelope conditions, the following equations characterize a
 steady state:

 (A.4) XUL + Xnt =
 p'(oLy

 (A.5) XUH + Kh = UQ s!
 P (PH)

 (A.6) P(z — kOl + p(0l)(A.Uj. + Xn/) — XUL) + XUL = 0,

 (A.7) P(z — kOh + p(6h){^uh + ^nf/) ~ ^uH) + ^uH — 0,

 (A.8) /3(/l — 5[(1 — X)(XUL + X„L) + X(XUll + X„H)] + (1 — X)XnL + XXltH) — XnL = 0,

 (A.9) P(fH — S(XUll + XnH) + X„H) — X„H = 0.

 It will prove convenient to use these equations get expressions for some of the multipliers.
 From Equation (A.6), we have

 (A.10) XUL = -
 P{az + (1 - o)9lk)

 a(l - /3)

 Similarly, from Equation (A.7), we have

 , P(az + (l-oc)9HK)
 (A.ll) XUH- a(1 _ 0)
 and from Equation (A.9) we have

 , A 10N , P(<4'h - &9Hk/p (Oh))
 (A.12) XnH

 Market H: Notice that Equations (A.5), (A.ll), and (A.12) fully characterize 9h in an
 unrelated way to 0l or submarket L in general. Using (A.ll) and (A.12) in (A.5),

 P(afH ~ Mhk/P (Oh) -az-( 1 - u)0hk) _ k
 a(l-j8) P'(0h)'

 Using the fact that p'(0) — ap(6)/0, we have

 a( it \ /-» o Qhk \ (1 - P)a0HK P a(f h - z) - (1 - a)0HK - S
 P (Oh) ) up(0H)

 Rearranging, 9h is characterized by

 fA 1T> P(a(fH ~ z) ~ (1 ~ a)0Hic) _ Ohk
 ( ' 1-/3(1-5) P(oHy
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 LEARNING AND LABOR MARKET DYNAMICS 49

 Market L: Rewrite Equation (A.8) as follows:

 ^nL ~ P(f L ~ 5(1 - ^•)(^»£. + ^nL) — 5A(AU// + h-nH) ~ ^(^nL ~

 where ]3 = fi/(l — fi). We now need an expression for X„L — X„H. From Equations (A.4) and
 (A.5), we have

 K K

 XnL~XnH = JW)~J7m+XuH~XuL

 Using the expressions for XU[t and XUL from Equations (A.10) and (A.ll), this is

 v"K"=?k>~ pW)+®")(1 _ °)<et _ e")K■

 So k„L becomes

 or, rearranging,

 ^■nL -

 fl — 5(1 — X)(XUL + X„L) — SX(XUH 4- XnH)

 X I —t~—r 1—7 + (BlaMl - a)(eL - 0h)k
 \p'(0L) P'Vh)

 K K

 f l - [5(1 - *) + ^]-77^T + (1 - 5)^^tt-t - W«)(l - «)(fc ~ 0„)k P \?l) P (Ph)

 Using this last equation together with the expression for \U[ from Equation (A.10) in Equa
 tion (A.4), we have

 P[fL - Z - (1 - ot)eLK/a - [5(1 - X) + a] * . + (1 - 5)A.—'* P'(0l) P'{0h)
 K

 -k(fi/a)(l - a)(0L - 0h)k\ = —

 Grouping terms and rearranging,

 (A.14) p[fL - z - (1 - a)0LK/a + (1 - S)X-^-~ + k(fi/a)( 1 - a)(0H - 0l)k] = P \®h) p'(0L)

 where J} = /J/(l - P(\ — 5)(1 — A.)). Given the value of 0H, which solves Equation (A.13), this
 last expression characterizes 0l

 A.2.3. Relation to equilibrium.

 Market H:. The steady-state value of the firm in market H is

 , _ fH-a>H
 H ~ 1 - 0(1 - 5)'
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 50 GERVAIS ET AL.

 Using the wage equation (A.l) in the free entry condition ftp (0h)J h — Ohk, we have

 0((1 - r)(/tf - z) - x6hk) 9hk
 i-tfi-8) ~ P(oHy

 Clearly, this is equivalent to its counterpart (A.13) from the Planner's problem if r = 1 — a.
 Market L: The free entry condition in that market reads

 Pp(6l)J l — Olk,

 where

 Jl = ft - G>L + /6(1 - S)[AJH + (1 - ^)Jl].

 We can use the free entry condition Jh = 0hk/Pp (Oh) to get

 _ /1 — a>L + P0_ - s)xeHK/pP(dH)
 1 ~ 1 - £(1 - 5)(1 - X) '

 From Equations (A.2) and (A.3), the wage in market L can be written as

 a>L = t(f.L + K0L) + (1 - t)z ~ PXxk(0H - oL).

 Using this wage in Jl, the free entry condition becomes

 a to JL ~~ (T^ + K0L"> + (! - r)2 - ~PXrK(eH - eL)) + (1 - S)X6hk/p (0h)
 1-0(1 = "L'■

 Rearranging, we have

 (A.15) P [(1 - r)(f l ~ z) - tk0l + ]3Xtk(0h - 0L) + (1 - 8)Xc/k/p'(0h)\ = uk/p'(0l).

 If a = 1 — r, this becomes

 P[fL-Z-( 1 - a)0LK/a + (1 - 8)Xk/p'(0h) + X(j3/a)(l - o)k(0h ~ 0L)] = k/p'(0l),

 which is identical to its counterpart (A.14) from the Planner's problem.

 A.3. Proof of Proposition 4. Start with steady-state equation (11):

 SL — f L z rk0l + P(1 - Z)SL + Xp [(1 - S)(SH - SL) + (UH - UL)\,

 where, again, r = r/(l - r). This can be rewritten

 SL [1 + Pd - S)X - p(l —S)]=fL — z— rkBl + Xp(l - 8)Sh + Xp(UH- UL).

 Using Equation (1) and Nash bargaining, we have in steady state:

 UL = U + 'xk6l\ ■
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 LEARNING AND LABOR MARKET DYNAMICS 51

 Substitute this into the Sl equation above:

 SL [1 + >8(1 - S)k - p(l -S)]=fL-z- TK0L + Xp [(1 - S)SH + U„] - [z + tk9l] .
 1 - p

 Using Nash bargaining and the zero-profit condition, we can express Sl as a function of 6jj.

 K

 SL =
 P( 1 - r)q(eL)'

 Substituting again, we have

 ° = 11+*' ~s)x - w -5)1+h-'

 XP
 - tk0l + Xp [(1 - S)SH + UH] - -7—z [z + tk6l] .

 Note that

 Ml=_ f

 f = -s)+«' -s)5"++
 = >3(1 - 5) [SH - SL] + £[£/„- £/l] > 0.

 Here we use the steady-state values for Sl and Ul derived above, and the results of Proposi
 tion 3 and Corollary 2 to sign both square bracketed terms. Finally:

 dC . (, e>i. \ *[1 + «1 - i)A - - «)] / q'ltts) I
 sz=-iH1+wJ sr^r—rssz?J<0'

 where we use the fact that q'{9) < 0. This establishes that 90^/9X > 0, as desired. ■
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