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A Data

We begin with annual ORBIS data on firm financials in Spain from 2005-2019. Since

our interest is in firms as a legal concept rather than on, say, physical locations or

lines of work, we restrict our sample to consolidated financial statements.

Our revenue measure is the ORBIS variable opre, i.e., operating revenue or

turnover measured at the firm-year level. This variable, in logs, residualized with

respect to 4-digit NAICS industry and year e↵ects, is our baseline revenue measure

referred to as y in the text.

We trim our panel of residualized revenue y data at the 0.1% and 99.9% thresholds.

We also lightly clean our sample in some other ways to guard against the possibility

that observed exit or entry might be driven by missing information in a specific year.

We first form candidate indicators for firm entry and exit events based on that firm’s

data availability in our historical ORBIS panel dataset. If for a given year the firm has

data for at least one of the most populated variables (e.g. employment and payroll)

but not revenue, then the firm is dropped altogether. Second, we ensure that data

“holes” do not generate spurious entry or exit by verifying that the firm is not ever

present in the dataset before (after) the candidate entry (exit) year, with the “after”

window extending for a bu↵er of four years.17

The benchmark ORBIS sample we construct following the guidelines above results

in a panel dataset in Spain with a total of 5,157,769 firm-years for 1,032,098 firms

in the 2005-2014 period. In the analysis that follows in this appendix, we provide

statistics from various alternative datasets we consider as part of robustness checks to

our baseline empirical approach. We also introduce various ancillary empirical results

referenced throughout the main text.

A.1 Empirical Robustness Checks

Table A.1 reports moments of residualized log revenue y and revenue growth �y from

our baseline Spanish ORBIS dataset on over one million firms for over five million

17For this reason, our e↵ective sample period never goes beyond 2014, the end date quoted in the
text. This restriction allows us to verify that a firm does not show up again between 2015 and 2019,
since 2019 is the formal end of the ORBIS historical dataset in the ORBIS vintage we used.
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Table A.1: Empirical Moments under Alternative Datasets

Revenue y Revenue Growth �y

Std dev Skewness Kurtosis Std dev Skewness Kurtosis
Baseline 1.548 0.025 4.196 0.656 -0.312 29.212
Before 2009 1.515 0.007 4.182 0.692 -0.071 29.920
After 2009 1.583 0.025 4.224 0.652 -0.482 26.974
Mfg 1.561 0.056 3.862 0.480 -0.829 41.572
Non-Mfg 1.546 0.021 4.250 0.679 -0.285 27.767
Unconsolidated only 1.527 -0.031 4.125 0.655 -0.321 29.160
No M&A 1.545 0.028 4.214 0.655 -0.320 28.937
Year E↵ects Only 1.699 0.131 3.756 0.660 -0.415 28.765
No Trimming 1.641 -0.068 5.088 0.774 -0.774 35.153
1% Trimming 1.416 -0.008 3.336 0.586 -0.201 21.646
Remove Firm Age 1.496 -0.063 4.356 0.664 -0.593 25.882
Italy 1.764 -0.660 6.070 0.956 -0.165 33.889
Portugal 1.514 -0.122 5.077 0.736 0.347 28.683
France 1.379 -0.152 6.483 0.604 0.637 72.380
Norway 1.705 -0.233 4.274 0.681 -0.153 26.698

Notes: This table reports moments of firm revenue y and revenue growth �y under alternative
empirical approaches. The Baseline moments in the top row represent our benchmark ORBIS
sample of just over 5 million firm-years for over one million firms covering the 2005-2014 period in
Spain. In this case, revenue levels y represent log firm revenue demeaned by sector and year, while
revenue growth �y is the first di↵erence of revenue levels. In subsequent rows, we report moments
from datasets constructed from ORBIS using di↵erent nations, subsamples, time periods, or data
treatment approaches.

firm years together with analogous moments for a range of robustness checks and

alternative samples described in the main text in Section 7.

A.1.1 An Extended Parametric Model

In a robustness check we consider an extended parametric AR(1) model. First, we

recover observed profitability zit for firm i in year t from residualized revenue yit by

inverting the labor optimality condition according to (14). In our extended model,

we decompose profitability as

zit = µie
log ẑit+⌫it . (18)
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Table A.2: Extended Parametric AR(1) Model

Panel A: Extended AR(1) Parameters Symbol Value
Autocorrelation ⇢ 0.9522
Persistent shock variance �

2
"

0.0189
Transitory shock variance �

2
⌫

0.0150
Pareto fixed e↵ects lower bound µmin 0.7941
Pareto fixed e↵ects shape µshape 4.4176
Panel B: Extended AR(1) Moments Data Model
Autocorrelation, log z 0.9071 0.9071
Variance , � log z 0.0480 0.0480
Variance, log z 0.2692 0.2692
Top 1% share, z 0.0408 0.0408
Mean, z 1.1441 1.1441
Panel C: Model Predictive Accuracy RMSE LPS
Nonparametric 1.000 -3.25
Extended AR(1) 1.021 -3.6
Benchmark AR(1) 1.033 -3.7

Notes: Panels A and B reports simulated method of moment estimates and fit for our extended
parametric AR(1) model (18). The estimates were computed using a simulated panel of identical size
to our benchmark ORBIS data for just over 5 million firm-years for over one million firms covering
the 2005-2014 period in Spain. As in our baseline model calibration, we recover profitability z from
log firm revenue demeaned by sector and year using the labor optimality condition (14). Panel C
reports a battery of predictive accuracy tests for log z – relative root mean squared errors (RMSE)
and log predictive scores (LPS) — for our nonparametric model from Section 2.2, our benchmark
AR(1), and the extended AR(1) from Panels A and B.

In the equation above µi is a firm fixed e↵ect cross-sectionally distributed Pareto

with scale parameter µmin and shape parameter µshape. Inside the exponent, log ẑit =

⇢ log zit�1+"it is a Gaussian AR(1) component with "it ⇠ N(0, �2
"
), and ⌫it ⇠ N(0, �2

⌫
)

is an iid transitory shock.

We estimate the model (18) with an exactly identified simulated method of mo-

ments strategy. While the identification is joint, roughly speaking, the autocorrela-

tion of profitability disciplines ⇢, the variance of both profitability growth and levels

discipline shock innovations �
2
"
and �

2
⌫
, and finally the mean and top 1% share of

profitability discipline the Pareto scale and shape parameters µmin and µmean. Panels

A and B in Table A.2 report our point estimates and targeted moments, revealing an

exact fit as well as high estimated persistence, conditional volatility close to evenly
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split between persistent and transitory sources, and a nontrivial distribution of firm

heterogeneity.

Panel C of A.2 subjects three models – the empirical or nonparametric model de-

fined in Section 2.2, our benchmark calibrated parametric AR(1), and the extended

AR(1) model – to a battery of predictive accuracy tests for log profitability. In the

second column we report the root mean squared error (RMSE) of the mean one-year

predictions implied by each model, normalizing the nonparametric model’s RMSE

to 1. This statistic measures the point forecast accuracy of each model, with higher

values indicating a poorer performance. In the column “LPS” we report the log pre-

dictive score, a measure of a model’s predictive accuracy over the full distribution of

one-year ahead profitability in which higher values indicate more accurate prediction.

Under either measure, the performances of both the baseline and extended parametric

models are poor relative to the nonparametric model, although the extended model

does improve on the benchmark AR(1)’s performance meaningfully. Quantitatively,

the extended model closes only around a third of the accuracy gap with the nonpara-

metric model measured using mean forecast RMSE’s and around a quarter of the

accuracy gap measured using the broader LPS measure.

A.2 Predicting Market Value with Lifetime Revenue

To examine the predictive content of our lifetime revenue measure W (y) defined in

Section 2, over and above current revenue y, we restrict our baseline Spanish ORBIS

dataset to a subset of only publicly listed firms. For this subsample, we observe

realized market value. We see in Table A.3’s regression results in columns 1-3 that

contemporaneous revenue is highly correlated with a firm’s market value. Yet, our

constructed firm lifetime revenue variable is a better predictor of a firm’s market value.

In particular, once lifetime revenue is included, contemporaneous revenue ceases to

be statistically significant. We view these results as validating the empirical relevance

of our lifetime revenue measure.

A.3 Industry Clustering and Exit Rates

We develop a framework linking firm exit to our notion of observed lifetime revenue

W (y) developed in Section 2. Recall that the stationary distribution H(y) of current

revenue y implies a stationary distribution H(W ) of lifetime revenue W . Similarly,
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Table A.3: Lifetime Revenue, Current Revenue, and Market Value

Market Valueit
(1) (2) (3) (4)

Revenueit 0.284*** 0.141*** 0.141*** -0.057
(0.029) (0.018) (0.018) (0.036)

Lifetime Revenueit 0.362***
(0.076)

Fixed E↵ects - Industry Industry Industry
Year Year

Firm-Years 4273 4273 4273 4273

Notes: The table reports OLS estimates of market value, in logs, for firm i in year t on log revenue
and log lifetime revenue. Industry refers to four-digit industry codes. The sample is drawn from the
subset of publicly listed firms within our baseline Spanish ORBIS dataset spanning 2005-2014 for
both listed and unlisted firms. Unconditionally, the correlation of log revenue and market value is
0.24, and the correlation of log lifetime revenue and log market value is 0.27. Standard errors are
clustered at the firm level. Significance is indicated as * = 10% level, ** = 5% level, and *** = 1%
level.

the revenue exit hazard P(Exit|y) implies a lifetime revenue exit hazard P(Exit|W ).

We rewrite the exit rate as

P(Exit) =
Z

P(Exit|W )dH(W ).

In this purely statistical model, the new exit rate predicted in partial equilibrium

after a windfall increase ✏ in lifetime revenue W is given by

P(Exit) =
Z

P(Exit|W + ✏)dH(W ).

Thus, the sensitivity of exit to this windfall revenue increase can then be computed

as the distributional “clustering statistic” C given by

C = �@P(Exit)
@✏

|✏=0 = �
Z

@P(Exit|W )

@W
dH(W ). (19)
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Table A.4: Clustering across Sectors

Clustering Statistic C NAICS Sector

0.091 Construction, 23
0.0543 Real Estate, 53
0.0492 Professional Technical Services, 54
0.0484 Retail Trade, 44
0.0453 Retail Trade, 45
0.0447 Information, 51
0.0401 Manufacturing, 33
0.0399 Wholesale Trade, 42
0.0399 Arts & Entertainment, 71
0.0392 Administrative Support Services, 56
0.0389 Accommodation and Food Services, 72
0.0376 Manufacturing, 32
0.0371 Educational Services, 61
0.0369 Other Services, 81
0.0351 Manufacturing, 31
0.0324 Transportation and Warehousing, 48
0.0288 Finance and Insurance, 52
0.0236 Health Care and Social Assistance, 62

Notes: This table reports the value of the clustering statistic C defined in (19) at the 2-digit NAICS
sector level. The underlying data is our benchmark ORBIS data for just over 5 million firm-years
for over one million firms covering the 2005-2014 period in Spain.

Intuitively, C is simply a weighted average of the slope of exit hazard. We use C
as a measure of clustering simply because the statistic captures the coincidence of

high distributional density with steep exit hazards. In other words, a lifetime revenue

distribution with a higher value of C has higher distributional weight and is “clustered”

in regions where exit is more marginal.

We compute the clustering statistic Cs using the nonparametric lifetime revenue

distributions for each 2-digit NAICS sector s in our baseline Spanish ORBIS dataset.

Table A.4 reports the bunching statistics by sector, which vary widely. For instance,

construction, real estate, professional services and retail trade are characterized by

larger clustering statistics than health care, transportation or manufacturing.

We then use more disaggregated industry classifications for 4-digit NAICS indus-

tries j within 2-digit sector s for year t in our data to estimate versions of the following
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Table A.5: Clustering and Exit

Exit Ratejt
(1) (2) (3) (4)

� Revenuejt -0.045*** -0.046*** -0.050*** -0.039***
(0.008) (0.012) (0.011) (0.011)

� Revenuejt -0.011* -0.013* -0.014*
⇥ Clusterings (0.006) (0.006) (0.007)

Clusterings 0.428** 0.413**
(0.211) (0.209)

� Revenuejt ⇥ -0.052**
I(Highly Clustereds) (0.022)

Fixed E↵ects - Year Year, Year,
Sector Sector

Industry-Years 1584 1584 1584 1584
Years 2006-13 2006-13 2006-13 2006-13

Notes: The table reports OLS estimates from (20) of 4-digit NAICS industryj exit rates in year t
on industry j’s revenue growth in year t and standardized clustering statistics Cs for 2-digit NAICS
sector s containing j. “Highly Clustered” sectors are those with clustering in the top quartile across
sectors. Standard errors are clustered at the 4-digit industry j level. Significance is indicated as * =
10% level, ** = 5% level, and *** = 1% level. The underlying data is our benchmark ORBIS data
for just over 5 million firm-years for over one million firms covering the 2005-2014 period in Spain.

specification

P(Exit)jt = ↵ + ��Revenuejt + ��Revenuejt ⇥ Cs(j) + �Cs(j) + "jt. (20)

Above, P(Exit)jt is the exit rate of industry j in year t, �Revenuejt is the industry

j growth rate of revenue in year t, and Cs(j) is the clustering statistic for sector s

containing industry j. Note that our model-based intuition predicts � < 0 if more

clustering is linked to higher exit sensitivity.18 Table A.5 presents estimates of (20).

18Our maintained assumption is that the degree of clustering at the 4-digit level is relatively
homogeneous within a given 2-digit sector and stable over our sample period. We rely on this
assumption since at the 4-digit level, with too few observations in each cell, the resulting Cs statistics
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Figure A.1: Clustering, Revenue Growth, and Exit Rates
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Notes: The binscatter plots exit rates on the vertical axis against revenue growth rates on the
horizontal axis. Both variables are measured at the industry (4-digit NAICS) by year level, with a
total of 198 industries and 1980 industry-years in total. In red, with associated line of best fit, the
plot is based on observations from “high clustering” 2-digit NAICS sectors in which the clustering
statistic C from (19) is in the top quartile across sectors, while the blue observations and line plot
data from other “low clustering” sectors with C below the top quartile. The underlying data is our
benchmark ORBIS data for just over 5 million firm-years for over one million firms covering the
2005-2014 period in Spain.

Column 1 shows that high revenue growth at the 4-digit industry level is associ-

ated with lower exit and that – via the estimated interaction term – this negative

association is stronger in sectors with a higher degree of clustering, consistent with

our model’s intuition. Columns 2 and 3 show the robustness of this pattern to the

inclusion of year fixed e↵ects as well as fixed e↵ects for 2-digit sector s. In both

columns, the interaction term continues to be negative and statistically significant at

the 10% level. In column 4, we replace the linear interaction term with a categorical

approach. We define a highly clustered sector as a sector with a clustering statistic

are too noisy. Also, note that output in our model is stationary while, naturally, output exhibits
positive growth in the data. So (20) links the exit rate to the transformed stationary growth rate of
sectoral revenue rather than its level. This transformation allows the empirical test to be consistent
with the interpretation of the model.
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Cs in the upper quartile of the distribution of Cs across sectors. The interaction term

is significant at the 5% level, emphasizing again that clustering is indeed statistically

linked to the dynamics of industry exit rates. Figure A.1 presents the same fact from

column 4, with heterogenous sensitivities in high vs low clustering sectors, using a

simple binscatter plot. So, to summarize, Table A.5 shows that industries with more

clustered lifetime revenue distributions exhibit higher exit rate sensitivity to changes

in revenue growth, intuitively consistent with our key model mechanism.

A.4 Predicting Firm Exit with Profit versus Revenue

Table A.6: Predicting Firm Outcomes with Revenue vs Profits

Regressor
Revenue Profit Margin

Regressand (1) (2)
Exit -0.021*** -0.001***

[0.001] [0.002]
R2 0.037 0.027
Employment Growth 0.021*** 0.0011***

[0.001] [0.0013]
R2 0.022 0.018

Notes: The table reports results from a serious of predictive regressions of firm exit (top panel)
or firm employment growth (bottom panel) in a given year on the firm’s revenue, in logs, or profit
margin, the ratio of earnings before interest and taxes to revenue, measured in the previous year.
Year and industry fixed e↵ects are included in all specifications. The sample is our benchmark
ORBIS data for just over 5 million firm-years for over one million firms covering the 2005-2014
period in Spain. p-values, based on clustering at the industry level, are reported in square brackets.
Significance is indicated as * = 10% level, ** = 5% level, and *** = 1% level.

Our empirical analysis centers on firm-level revenue. Table A.6 reports the re-

sults of a set of predictive regressions demonstrating that our revenue variable is a

better predictor of both exit and employment growth at the firm level than a natural

alternative measure of firm profits.
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A.5 A Power Law Tail in Firm Revenue

Fat-tailed cross-sectional size distributions are ubiquitous in many economic contexts

and can in principle be detected by a telltale linear relationship between log size and

the log counter-CDF of a distribution (Gabaix, 2016). In Figure A.2, we see that

a linear relationship of this sort matches the shape of the right tail of our baseline

sample’s stationary distribution of revenue H(y).

Figure A.2: A Power Law Tail in Firm Revenue
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Notes: The solid red line in the figure plots the stationary distribution of revenue H(y) computed
from our baseline ORBIS sample of just over 5 million firm-years for over one million firms covering
the 2005-2014 period in Spain. The horizontal axis is revenue y, in logs, and the vertical axis is the
log counter CDF of the revenue distribution. The dotted line is the line of best fit estimated on the
upper half of our revenue distribution with a slope coe�cient of �0.77.
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B Model

In this appendix we provide further information on our solution and calibration of

the quantitative model. We start with our approach to (very lightly) regularizing the

raw nonparametric empirical objects from Section 2 to satisfy standard assumptions

for firm dynamics models. We then discuss the numerical techniques we employ while

solving and calibrating both the nonparametric and parametric models. Finally, we

present details on our quantitative model robustness checks and recalibrations in a

set of summary tables.

B.1 Regularizing the Raw Data

Figure B.1: Regularized vs Raw Transition Distribution
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Notes: The left panel of the figure plots raw (in red) and regularized (in blue) transition densities
h(y0|y) for next year’s revenue y

0 conditional upon median revenue y in the current year. The right
panel plots the regularization shifts or the di↵erence between the regularized and raw densities. The
horizontal axis in each figure is next year’s revenue y

0, in logs. The underlying data is drawn from
our baseline ORBIS sample of just over 5 million firm-years for over one million firms covering the
2005-2014 period in Spain.

In order to embed H(y0|y), HE(y), and P (Exit|y) into a canonical heterogeneous

firms model, each needs to be adjusted in order to satisfy some standard technical

or regularity assumptions. To ensure monotonicity of firm value functions and a

well behaved value function iteration algorithm, we first require that the transition

distributionH exhibits persistence via first-order stochastic dominance: for two states
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Figure B.2: Regularized vs Raw Entry and Exit Patterns
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Notes: The left panel of the figure plots the entry density hE(y), and the right panel plots the
exit hazard P(Exit|y). The horizontal axis in each figure is the current year’s revenue y, in logs. In
both panels, the raw object is presented in red, and the regularized object is presented in blue. The
underlying data is drawn from our baseline ORBIS sample of just over 5 million firm-years for over
one million firms covering the 2005-2014 period in Spain.

such that y2 � y1, we require that H(y0|y2)  H(y0|y1) for all y0. Second, to ensure

that the fixed cost distribution G(�F ) has a nondecreasing CDF, i.e., to ensure that

the fixed cost distribution is in fact a distribution, we require that the exit hazard

P(Exit|y) is nonincreasing in y. We do not technically face a need to regularize the

entry distribution, but given its overall declining shape in the raw data we also impose

that the entry density, not just the exit hazard, is nonincreasing as well.

To impose these regularizations, we design and employ a simple procedure with the

intention of making only minimal modifications to the raw data. First, we note that

our assumptions of first-order stochastic dominance and a downward sloping hazard

can be written as a large set of inequality restrictions which must be satisfied by each

value of our extracted distributions and exit hazards. Our procedure then operates as

follows. First, we initialize a regularized object, either a transition matrix or an exit

hazard, to the raw data equivalent. Second, we compute the existing “gaps” in each of

our inequality restrictions. We then distribute weight proportional to the size of this

gap to the remaining entries in the corresponding distribution or hazard. Third, we

recompute the inequality gaps or errors in our regularized empirical objects, ending

the procedure if the gaps are absent but restarting if they are not. An example may
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help build intuition for our procedure. If an exit hazard is slightly less than downward

sloping in the raw data due to apparent noise and a bump upwards in observed exit

rates for a given revenue bin, we simply take a small portion of the exit rate in that

bin and distribute it elsewhere along the hazard, repeating this approach for all points

iteratively until the resulting hazard is downward sloping as a whole.

Helpfully, this regularization procedure turns out to impose only extremely light

modifications to the raw data, i.e., the raw data is already very close to satisfying

these regularity conditions absent apparent statistical noise. To illustrate this for

our baseline ORBIS sample, Figure B.1 compares the raw and regularized transition

density for revenue y
0 conditional upon median revenue y in the current year. The

left panel plots the two resulting densities, which are virtually identical to the naked

eye. The right panel plots the “shift” or di↵erence between the regularized and

raw densities, which remains trivial across revenue levels. Figure B.2 compares the

raw and regularized entry distribution and exit hazards which are, again, virtually

indistinguishable. In both figures, where applicable, the raw data is presented in red

and the regularized objects are plotted in blue.

B.2 Solving the Empirical Nonparametric Model

Note that the static optimality condition for the input n in equation (14) and the

residualized log revenue grid yi (indexing our partition of the revenue space into

Ny equally weighted intervals) together imply a quantile-based grid for profitability

shocks zi, i = 1, ..., Nz, where Nz = Ny and log zi = (1 � ↵)yi for all i. Similarly,

the empirical objects H(y0|y), HE(y), and P(Exit|y) imply an incumbent profitability

transition F (z0|z), an entry distribution FE(z), and an exit hazard P(Exit|z) on the

profitability grid zi.

We assume that exit occurs for the highest profitability firms in our sample for

only exogenous reasons, i.e., that � = P(Exit|zNz). In our baseline ORBIS sample in

Spain, the resulting exogenous exit rate is � = 3.9%. The remaining parameters to be

calibrated in our nonparametric model include only the labor share ↵, the household’s

rate of time preference �, the fixed labor supply N̄ , and the sunk entry cost �E. Given

a parameterization of the model, i.e., a list of these parameters, we solve the model

with an outer loop-inner loop approach as follows.

1. Outer Loop on GE Objects Guess values for the wage W and the entry
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mass ME, and fix a GE tolerance ✏
GE

> 0.

(a) Inner Loop on Firm Value Function Initialize k = 0, guess a value

function V
(k)(z), and fix a value function error tolerance ✏

V
> 0.

i. Compute the implied continuation values �⇤
F

(k)(z) via equation (2) and

using V
(k)(z).

ii. Infer the distribution G
(k)(�F ) of fixed cost shocks �F consistent with

�
⇤
F

(k)(z), V (k)(z), and the empirical exit hazard by using the mapping

G
(k)(�⇤

F

(k)(z)) =
1� P(Exit|z)

1� �
.

iii. Compute an updated value function V
(k+1)(z) via the Bellman equa-

tion

V
(k+1)(z) =

(
maxn (zn↵ �Wz)

�
R
�
⇤
F

(k)(z)

0 �FdG(�F )
+ �(1� �)

Z
V

(k)(z0)dF (z0|z)
)
.

iv. If the error in the Bellman equation maxz |V (k+1)(z) � V
(k+1)(z)| is

smaller than ✏
V , then the firm value function V (z) = V

(k)(z), con-

tinuation values �
⇤
F
(z) = �

⇤
F

(k)(z), and the fixed cost distribution

G(�F ) = G
(k)(�F ) are computed. Otherwise, set k = k+1 and return

to step (1(a)i).

(b) Inner Loop on Firm Distribution Initialize k = 0, guess an operating

distribution F
(k)
O

(z) for firms, guess a mass M
(k)
O

of operating firms, and

fix a tolerance ✏
F
> 0 for distributional convergence.

i. Compute the implied mass of operating firms M (k+1)
O

via

M
(k+1)
O

= (1� �)M (k)
O

Z
G(�⇤

F
(z))dF (k)

O
(z) +ME.

ii. Compute the implied distribution of operating firms F (k+1)
O

(z) via

F
(k+1)
O

(z0) = (1��)
M

(k)
O

M
(k+1)
O

Z
G(�⇤

F
(z))F (z0|z)dF (k)

O
(z)+

ME

M
(k+1)
O

FE(z
0).

iii. If the errors in the operating mass update |M (k+1)
O

�M
(k)
O

| and distri-
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butional update maxz |F (k+1)
O

(z)�F
(k)
O

(z)| are both less than ✏
F , then

the operating mass MO = M
(k)
O

and operating distribution FO(z) =

F
(k)
O

(z) are computed. Otherwise, set k = k + 1 and return to step

(1(b)i).

2. Compute the implied value to entry VE via

VE =

Z
V (z)dFE(z).

3. Compute the implied labor demand N via

N = MO

Z
n
⇤(z)dFO(z),

where n
⇤(z) is optimal static labor demand for an individual firm with prof-

itability z.

4. If the error in the free entry condition |VE � �E| and the error in the labor

market clearing condition |N � N̄ | are both less than the GE tolerance ✏
GE,

then the model is solved. Otherwise, update your guesses for the wage and

entry mass and return to step (1).

When the algorithm above is complete, the nonparametric version of our model

is solved in a manner not only consistent with general equilibrium but also, by con-

struction, with the observed revenue transitions, the entry distribution, and the exit

hazard measured nonparametrically.

A few additional technical details are useful. We implement all of the calculations

above continuously, linearly interpolating value functions, fixed cost distributions,

operating distributions, and continuation values on the grid zi. Where integration is

required, we use Simpson quadrature with densities fO(z), fE(z), and f(z0|z) consis-
tent with linear interpolation of the CDFs FO(z), FE(z), and F (z0|z) in a manner

which preserves the empirical weight on equal-mass intervals containing the revenue

quantiles yi. Because the free entry condition is separable from the entry mass ME,

we first employ bisection on the aggregate wage W to ensure that the free entry

condition is satisfied, then we update ME so that (3) is exactly satisfied. In our

baseline, we employ Ny = Nz = 101 grid points or quantiles, and on a 2017 iMac
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Pro model solution takes around a minute or two in MATLAB without requiring

aggressive parallelization.

B.3 Solving the AR(1)/Parametric Model

In our AR(1) or parametric model version, the parameters to be calibrated include

the labor share ↵, the household’s rate of time preference �, the fixed labor sup-

ply N̄ , the sunk entry cost �E, the upper bound �̄F of the fixed cost distribution

G(�F ) = U(0, �̄F ), the persistence of the lognormal AR(1) profitability process ⇢, the

conditional variance of the lognormal AR(1) profitability process �
2, and the mean

of the lognormal entry distribution µE. The exogenous exit hazard � is carried over

identically from our nonparametric model solution as described above. Given a pa-

rameterization of the model, i.e., a list of these parameters, we solve the model with

an outer loop-inner loop approach as follows.

1. Outer Loop on GE Objects Guess values for the wage W and the entry

mass ME, and fix a GE tolerance ✏
GE

> 0.

(a) Inner Loop on Firm Value Function Initialize k = 0, guess a value

function V
(k)(z), and fix a value function error tolerance ✏

V
> 0.

i. Compute an updated value function V
(k+1)(z) via the Bellman equa-

tion

V
(k+1)(z) =

(
maxn (zn↵ �Wz)

�
R
�
⇤
F

(k)(z)

0 �FdG(�F )
+ �(1� �)

Z
V

(k)(z0)dF (z0|z)
)
.

ii. If the error in the Bellman equation maxz |V (k+1)(z) � V
(k+1)(z)| is

smaller than ✏
V , then the firm value function V (z) = V

(k)(z) is com-

puted. Otherwise, set k = k + 1 and return to step (1(a)i).

(b) Inner Loop on Firm Distribution Initialize k = 0, guess an operating

distribution F
(k)
O

(z) for firms, guess a mass M
(k)
O

of operating firms, and

fix a tolerance ✏
F
> 0 for distributional convergence.

i. Compute the implied mass of operating firms M (k+1)
O

via

M
(k+1)
O

= (1� �)M (k)
O

Z
G(�⇤

F
(z))dF (k)

O
(z) +ME.
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ii. Compute the implied distribution of operating firms F (k+1)
O

(z) via

F
(k+1)
O

(z0) = (1��)
M

(k)
O

M
(k+1)
O

Z
G(�⇤

F
(z))F (z0|z)dF (k)

O
(z)+

ME

M
(k+1)
O

FE(z
0).

iii. If the errors in the operating mass update |M (k+1)
O

�M
(k)
O

| and distri-

butional update maxz |F (k+1)
O

(z)�F
(k)
O

(z)| are both less than ✏
F , then

the operating mass MO = M
(k)
O

and operating distribution FO(z) =

F
(k)
O

(z) are computed. Otherwise, set k = k + 1 and return to step

(1(b)i).

2. Compute the implied value to entry VE via

VE =

Z
V (z)dFE(z).

3. Compute the implied labor demand N via

N = MO

Z
n
⇤(z)dFO(z),

where n
⇤(z) is optimal static labor demand for an individual firm with prof-

itability z.

4. If the error in the free entry condition |VE � �E| and the error in the labor

market clearing condition |N � N̄ | are both less than the GE tolerance ✏
GE,

then the model is solved. Otherwise, update your guesses for the wage and

entry mass and return to step (1).

Note that unlike in the empirical or nonparametric version of the model, the

fixed cost distribution G(�F ) = U(0, �̄F ) is predetermined. Also note that the entry

and transition distributions FE(z) and F (z0|z) are parametric, following conventional

lognormal processes converted to a uniform profitability grid as in Tauchen (1986).

Just as in the nonparametric solution of the model, however, we continue to solve

the model continuously, storing value functions via linear interpolation, computing

integrals via Simpson quadrature, and evaluating entry, operating, and transition

distributions using linear interpolation of the CDFs FE(z), FO(z), and F (z0|z). In

our baseline, we again employ Nz = Ny = 101 points for our interpolation procedures,
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and model solution takes around a minute or two on a 2017 iMac Pro in MATLAB

without aggressive parallelization.

B.4 Calibrating the Model

There are multiple model parameters which we fix or calibrate externally before en-

gaging in a moment-matching exercise, as outlined in Section 5.1. We set ↵ = 2/3 to

generate a conventional labor share of 2/3, we set � = 1/1.04 to be consistent with

a conventional 4% real interest rate and an annual solution of the model, and we set

N̄ to be equal to the aggregate employment rate (resulting in N̄ = 0.5974 in our

baseline Spanish sample and comparable values for our other samples). We also set

the exogenous exit hazard � based on the observed exit rate of the largest firms in our

empirical sample, resulting in � = 3.9% for our baseline Spanish sample and compa-

rable values for our other samples. Each of the versions of our model, nonparametric

and parametric, is solved holding these externally calibrated parameters fixed.

Nonparametric Calibration With the externally calibrated parameters listed

above fixed, only the sunk entry cost �E must be calibrated for the nonparamet-

ric model. We choose the value of �E to match the observed average number of

employees per firm. The number of employees per firm declines in the wage W ,

which adjusts to satisfy the free entry condition as the parameter �E is shifted.

Parametric Calibration With the externally calibrated parameters above fixed,

we must still fix the values of the lognormal AR(1) profitability process (⇢, �2), the

mean of the lognormal entry distribution µE, the upper bound �̄F of the fixed cost

distribution G(�F ) = U(0, �̄F ), as well as the sunk entry cost �E. Following conven-

tion in the parametric firm dynamics literature, we first set ⇢ to the autocorrelation

of the profitability process log z inferred from our observed revenue series y, and we

set �2 to match the observed variance of log z.

Then, with ⇢ and �
2 fixed, we choose the remaining three parameters (µE, �̄F ,�E)

to jointly match three moments. As in the nonparametric model, we match (i) the

observed average number of employees per firm. We also match (ii) the observed exit

rate P(Exit) which naturally moves with the fixed cost upper bound �̄F . Finally, we

match (iii) the mean di↵erence between log revenue for entering and operating firms,

which naturally moves with the mean of the entry distribution µE. One might wonder
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why we did not target moments (ii) nor (iii) in our nonparametric model solution.

But the nonparametric model matches both of these moments by construction, since

both moments are implied by the combination of incumbent revenue transitions, exit

hazards, and the entry distribution which are fully matched in the nonparametric

model.

Fixed Cost Distributions The nonparametric and parametric calibration tech-

niques yield fixed cost distributions G(�F ), which we plot in Figure B.3. In the

nonparametric case, our procedure yields a distribution with high density at low

fixed cost realizations: this is required in order to match the strongly declining exit

hazard found empirically and plotted in Figure B.2.

Figure B.3: Calibrated Fixed Cost Distributions
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Notes: The left panel plots the density g(�F ) of fixed costs recovered in our baseline nonparametric
quantitative model analysis, while the right panel plots the same density for our baseline calibrated
AR(1) quantitative model. The horizontal axis is the fixed cost shock �F , in logs, while the vertical
axis is the density g(�F ).

B.5 Robustness Checks

Section 7 overviews a large number of quantitative model robustness checks. For each

check, we redo the calibration process summarized above for an alternative sample

or model assumption, resulting in the recalibrated values list in Appendix Table B.1.

The associated counterfactual implications of a subsidy to operating firms, in the

nonparametric vs AR(1) cases, are available in Appendix Table B.2.

19



Table B.1: Alternative Model Calibrations

Empirical Case Parametric AR(1) Case
�E ⇢ � µE �̄F �E

Panel A: Alternative Model Assumptions
Endogenous Labor Supply 22.9 0.94 0.19 -0.44 2.30 5.18
Higher ↵ = 0.75 16.8 0.94 0.14 -0.33 1.96 4.42
Lower ↵ = 0.60 28.4 0.94 0.23 -0.53 2.50 5.66
Panel B: Alternative Datasets
Before 2009 16.7 0.93 0.19 -0.52 2.46 4.02
After 2009 25.1 0.95 0.19 -0.46 1.96 5.48
Manufacturing Only 25.2 0.98 0.13 -0.48 2.11 4.25
Non-Manufacturing Only 21.5 0.93 0.20 -0.44 2.25 4.99
Unconsolidated Accounts 16.9 0.94 0.19 -0.44 2.15 4.79
Excluding M&A 22.7 0.94 0.19 -0.36 2.55 4.97
Year E↵ects Only 14.3 0.96 0.19 -0.45 2.17 4.84
No Trimming 129.7 0.91 0.24 -0.33 3.12 7.65
Trimming at 1% and 99% 9.39 0.94 0.18 -0.41 1.88 4.00
Remove Firm Age 64.7 0.92 0.21 0.11 2.40 12.1
Italy 28.0 0.91 0.24 -0.65 3.13 5.08
Portugal 13.4 0.95 0.17 -0.84 1.57 2.18
France 22.7 0.96 0.15 -0.65 1.62 3.67
Norway 24.8 0.95 0.19 -0.85 1.23 3.33
Baseline 22.9 0.94 0.19 -0.43 2.30 5.18

Notes: This table reports calibrated parameters for each of our model robustness checks and al-
ternative datasets, for both the empirical and parametric AR(1) model versions. Note that in the
extension with endogenous labor supply, we also calibrate ! = 1.51 (empirical case) and ! = 1.39
(parametric case) to match the Spanish employment rate.
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Table B.2: Relative Subsidy Impacts in Our Empirical vs AR(1) Models

Exit Rate Output
Panel A: Alternative Model Assumptions
Endogenous Labor Supply 3.0660 0.8125
Higher ↵ = 0.75 3.0728 0.6872
Lower ↵ = 0.60 3.0765 0.6859
Panel B: Alternative Datasets
Before 2009 2.5787 0.7095
After 2009 2.4338 0.6176
Manufacturing Only 3.6506 0.4211
Non-Manufacturing Only 2.7832 0.7108
Unconsolidated Accounts 3.1550 0.7109
Excluding M&A 3.0750 0.7161
Year E↵ects Only 2.8076 0.7015
No Trimming 3.3206 0.7883
Trimming at 1% and 99% 2.6755 0.7461
Remove Firm Age 2.9401 0.3934
Italy 3.9723 0.7040
Portugal 5.8445 0.7905
France 1.8992 0.5814
Norway 2.8302 0.6560
Baseline 3.0701 0.6845

Notes: This table reports relative changes at the aggregate level from a fixed cost subsidy equal to
5% of pre-subsidy output in our calibrated empirical nonparametric versus the parametric AR(1)
model. Panel A reports results under various alternative model assumptions, while Panel B considers
calibrations based on alternative ORBIS datasets. For each experiment indicated in the first column,
we first calculate the change in the aggregate exit rate, in percentage points, and aggregate output,
in percent, relative to the no-subsidy values for both the nonparametric and AR(1) models. We then
report the ratio of the nonparametric to the AR(1) model’s changes. The second column reports
this ratio for the exit rate, while the third column reports this ratio for output.
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