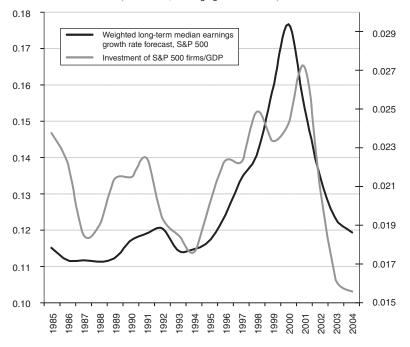
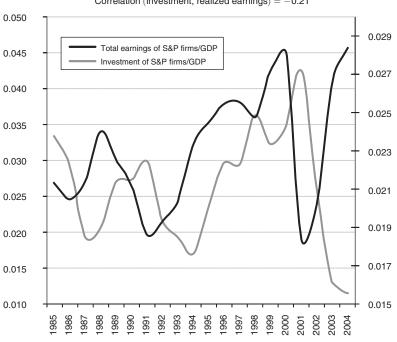
Can News about the Future Drive the Business Cycle?

By Nir Jaimovich and Sergio Rebelo*

Aggregate and sectoral comovement are central features of business cycles, so the ability to generate comovement is a natural litmus test for macroeconomic models. But it is a test that most models fail. We propose a unified model that generates aggregate and sectoral comovement in response to contemporaneous and news shocks about fundamentals. The fundamentals that we consider are aggregate and sectoral total factor productivity shocks as well as investmentspecific technical change. The model has three key elements: variable capital utilization, adjustment costs to investment, and preferences that allow us to parameterize the strength of short-run wealth effects on the labor supply. (JEL E13, E20, E32)


Business cycle data feature two important forms of comovement. The first is aggregate comovement: major macroeconomic aggregates, such as output, consumption, investment, hours worked, and the real wage tend to rise and fall together. The second is sectoral comovement: output, employment, and investment tend to rise and fall together in different sectors of the economy.

Robert Lucas (1977) argues that these comovement properties reflect the central role that aggregate shocks play in driving business fluctuations. However, it is surprisingly difficult to generate both aggregate and sectoral comovement, even in models driven by aggregate shocks. Robert J. Barro and Robert G. King (1984) show that the one-sector growth model generates aggregate comovement only in the presence of contemporaneous shocks to total factor productivity (TFP). Other shocks generate a negative correlation between consumption and hours worked. Lawrence Christiano and Terry Fitzgerald (1998) show that a two-sector version of the neoclassical model driven by aggregate, contemporaneous TFP shocks does not generate sectoral comovement of investment and hours worked.


In this paper we propose a model that generates aggregate and sectoral comovement in response to both aggregate and sectoral shocks. The shocks that we consider are aggregate TFP shocks, investment-specific shocks, and sectoral TFP shocks to the consumption and investment sectors. We consider both contemporaneous shocks and news shocks. News shocks consist of information that is useful for predicting future fundamentals but does not affect current fundamentals.

The early literature on business cycles (e.g., William H. Beveridge 1909; Arthur Pigou 1927; John Maurice Clark 1934) emphasizes news shocks as potentially important drivers of business cycles. The idea is that news shocks change agents' expectations about the future, affecting their current investment, consumption, and work decisions. There is a revival of interest in this idea, motivated in part by the US investment boom of the late 1990s and the subsequent economic slowdown. Figure 1 displays some suggestive data for this episode. The first panel shows data obtained from the Institutional Brokers Estimate System on the median analyst forecast of the

^{*} Jaimovich: Department of Economics, Stanford University, Stanford, CA, 94305-6072 (e-mail: njaimo@stanford.edu); Rebelo: Department of Finance, Kellogg School of Management, Northwestern University, Evanston, IL 60208 (e-mail: s-rebelo@kellogg.northwestern.edu). We thank three anonymous referees, Gadi Barlevy, Paul Beaudry, Larry Christiano, Fabrice Collard, Wouter Denhaan, Martin Eichenbaum, Zvi Hercowitz, Erin Hoge, Navin Kartik, Benjamin Malin, Franck Portier, and Laura Veldkamp for their comments.

Correlation (investment, earnings growth forecast) = 0.60

Correlation (investment, realized earnings) = -0.21

FIGURE 1. INVESTMENT, EARNINGS GROWTH FORECASTS, AND REALIZED EARNINGS

value-weighted long-run growth rate of earnings for companies in the Standard & Poors 500 index. The second panel shows the level of investment and realized earnings for the same companies. We see that after 1995 the expected annual earnings growth rate rises rapidly, from roughly 11.5 percent to 17.7 in 2001.¹ Investment and earnings forecasts are positively correlated, whereas investment and realized earnings are negatively correlated.² One plausible interpretation of these data is that high expectations about earnings growth driven by the prospects of new technologies lead to high levels of investment and to an economic boom. When the new technologies fail to live up to what was expected, investment falls, and a recession ensues.

It is surprisingly difficult to make this story work in a standard business cycle model. John H. Cochrane (1994), Jean Pierre Danthine, John B. Donaldson, and Thore Johnsen (1998), and Paul Beaudry and Frank Portier (2004, 2007) find that many variants of the neoclassical growth model fail to generate a boom in response to expectations of higher future TFP. Good news about future productivity makes agents wealthier, so they increase their consumption, as well as their leisure, reducing the labor supply. This fall in labor supply causes output to fall. Therefore, good news about tomorrow generates a recession today!

Our model introduces three elements into the neoclassical growth model that together generate comovement in response to news shocks. These same elements generate comovement in response to contemporaneous shocks. The first element, variable capital utilization, increases the response of output to news about the future. The second element, adjustment costs to investment, gives agents an incentive to respond immediately to news about future fundamentals.³ The third element, a weak short-run wealth effect on the labor supply, helps generate a rise in hours worked in response to positive news. We introduce this element by using a new class of preferences which gives us the ability to parameterize the strength of the short-run wealth effect on the labor supply. These preferences nest, as special cases, the two classes of utility functions most widely used in the business cycle literature, those characterized in Robert G. King, Charles Plosser, and Rebelo (1988) and in Jeremy Greenwood, Zvi Hercowitz, and Gregory Huffman (1988).

In our quantitative work, we consider a one-sector and a two-sector version of our model. The latter is used to study sectoral comovement. Using our preferences to vary the strength of short-run wealth effects on the labor supply, we find that these effects lie at the heart of the model's ability to generate comovement. We can generate *aggregate* comovement in the presence of moderate labor-supply wealth effects. However, low short-run labor-supply wealth effects are essential to generate *sectoral* comovement that is robust to the timing and nature of the shocks.⁴

Our work is related to several recent papers on the role of news and expectations as drivers of business cycles. Beaudry and Portier (2004) propose the first model that produces an expansion in response to news. Their model features two complementary consumption goods, one durable and one nondurable. Both goods are produced with labor and a fixed factor but with no physical capital. The model generates a boom in response to good news about TFP in the nondurable goods sector. Christiano et al. (2007) show that habit persistence and investment adjustment costs

¹ The realized average annual earnings growth rate is 9 percent for the 1985–1995 period and 11 percent for the 1995–2000 period.

² The correlation between investment and earnings growth forecasts is 0.60 for the whole sample and 0.71 for the 1995–2004 period. Earnings forecasts lead investment; the correlation between the earnings forecast at time *t* and investment at time t + 1 is 0.55 for the full sample. The correlation between investment and realized earnings is -0.21 for the whole sample and -0.46 for the 1995–2004 period.

³ The first two elements, variable capital utilization and adjustment costs to investment, are generally necessary to generate comovement in response to contemporaneous investment-specific shocks. See Greenwood, Hercowitz, and Per Krusell (2000).

⁴ Guido Imbens, Donald Rubin, and Bruce Sacerdote (1999) provide microeconomic evidence that is consistent with the view that short-run wealth effects on the labor supply are weak. Their evidence is based on a sample of lottery prize winners. They find that prizes of \$15,000 per year for 20 years have no effect on the labor supply.

produce aggregate comovement in response to news about a future TFP shock. In their model, intertemporal substitution in the supply of labor is large enough to compensate for the negative wealth effect of the news shock on the labor supply. However, hours worked fall when the shock materializes, because there continues to be a negative wealth effect on labor supply, but there is no longer a strong intertemporal substitution effect on labor supply. Wouter Denhaan and Georg Kaltenbrunner (2005) study the effects of news in a matching model. Matching frictions are a form of labor adjustment costs, so their model is related to the version of our model with adjustment costs to labor, which we discuss in Section IV. Guido Lorenzoni (2005) studies a model in which productivity has a temporary and a permanent component and agents have imperfect information about the relative importance of these two components. Simon Gilchrist and John Leahy (2002) discuss the effects of news in both a sticky price model and in a version of the model proposed by Ben Bernanke, Mark Gertler, and Gilchrist (1999). Olivier Blanchard (2007) emphasizes the importance of news about future fundamentals in an open economy setting.

Our paper is organized as follows. In Section I we propose a one-sector model that generates aggregate comovement with respect to news about TFP and investment-specific shocks. In Section II we explore the role that capital utilization, adjustment costs, and preferences play in these results. In Section III we present a two-sector model that generates sectoral comovement with respect to both contemporaneous and news shocks to fundamentals. The fundamentals that we consider are aggregate TFP shocks and sectoral TFP shocks to consumption and investment. In Section IV we study simulations of a version of our one-sector model with investment-specific technological progress in which agents receive forecasts about future output growth. Section V concludes.

I. The One-Sector Model

Our model economy is populated by identical agents who maximize their lifetime utility (U) defined over sequences of consumption (C_t) and hours worked (N_t) :

(1)
$$U = E_0 \sum_{t=0}^{\infty} \beta^t \frac{(C_t - \psi N_t^{\theta} X_t)^{1-\sigma} - 1}{1 - \sigma},$$

where

and E_0 denotes the expectation conditional on the information available at time zero. We assume that $0 < \beta < 1$, $\theta > 1$, $\psi > 0$, and $\sigma > 0$. Agents internalize the dynamics of X_t in their maximization problem. The presence of X_t makes preferences non-time-separable in consumption and hours worked. These preferences nest as special cases the two classes of utility functions most widely used in the business cycle literature. When $\gamma = 1$ we obtain preferences of the class discussed in King, Plosser, and Rebelo (1988), which we refer to as KPR. When $\gamma = 0$ we obtain the preferences proposed by Greenwood, Hercowitz, and Huffman (1988), which we refer to as GHH.

Output (Y_t) is produced with a Cobb–Douglas production function using capital services and labor:

(3)
$$Y_t = A_t (u_t K_t)^{1-\alpha} N_t^{\alpha}.$$

Here, A_t represents the level of TFP. Capital services are equal to the product of the stock of capital (K_t) and the rate of capital utilization (u_t) . Output can be used for consumption or investment (I_t) :

$$Y_t = C_t + I_t / z_t.$$

The variable z_t represents the current state of technology for producing capital goods. We interpret an increase in z_t as resulting from investment-specific technological progress, as in Greenwood, Hercowitz, and Krusell (2000). Combining (3) and (4) we obtain

(5)
$$A_t(u_tK_t)^{1-\alpha} N_t^{\alpha} = C_t + I_t/z_t.$$

Capital accumulation is given by

(6)
$$K_{t+1} = I_t \left[1 - \varphi \left(\frac{I_t}{I_{t-1}} \right) \right] + \left[1 - \delta(u_t) \right] K_t.$$

The function $\varphi(\cdot)$ represents adjustment costs that are incurred when the level of investment changes over time. We assume that $\varphi(1) = 0$, $\varphi'(1) = 0$, so that there are no adjustment costs in the steady state, and that $\varphi''(1) > 0$. Christiano, Martin Eichenbaum, and Charles Evans (2005) (henceforth CEE) argue that this form of adjustment costs is better at mimicking the response of investment to a monetary shock than the specifications in Lucas and Edward Prescott (1971), Andrew Abel and Blanchard (1983), and Fumio Hayashi (1982).⁵

The function $\delta(u_t)$ represents the rate of capital depreciation. We assume that depreciation is convex in the rate of utilization: $\delta'(u_t) > 0$, $\delta''(u_t) \ge 0$. The initial conditions of the model are K_0 , I_{-1} , and $X_{-1} > 0$.

The first-order conditions for this economy's planning problem are

(7)
$$(C_t - \psi N_t^{\theta} X_t)^{-\sigma} + \mu_t \gamma C_t^{\gamma-1} X_{t-1}^{1-\gamma} = \lambda_t,$$

(8)
$$(C_t - \psi N_t^{\theta} X_t)^{-\sigma} \psi N_t^{\theta} + \mu_t = \beta E_t [\mu_{t+1} (1 - \gamma) C_{t+1}^{\gamma} X_t^{-\gamma}],$$

(9)
$$(C_t - \psi N_t^{\theta} X_t)^{-\sigma} \theta \psi N_t^{\theta-1} X_t = \lambda_t \alpha A_t (u_t K_t)^{1-\alpha} N_t^{\alpha-1},$$

(10)
$$\lambda_t (1-\alpha) A_t u_t^{-\alpha} K_t^{1-\alpha} N_t^{\alpha} = \eta_t \delta'(u_t) K_t,$$

(11)
$$\eta_{t} = \beta E_{t} [\lambda_{t+1} (1-\alpha) A_{t+1} u_{t+1}^{1-\alpha} K_{t+1}^{-\alpha} N_{t+1}^{\alpha} + \eta_{t+1} [1-\delta(u_{t+1})],$$

(12)
$$\lambda_t/z_t = \eta_t \left[1 - \varphi\left(\frac{I_t}{I_{t-1}}\right) - \varphi'\left(\frac{I_t}{I_{t-1}}\right) \frac{I_t}{I_{t-1}} \right] + E_t \left[\beta\eta_{t+1}\varphi'\left(\frac{I_{t+1}}{I_t}\right)\left(\frac{I_{t+1}}{I_t}\right)^2\right],$$

where μ_t , λ_t , and η_t are the Lagrange multipliers associated with (2), (5), and (6), respectively.

⁵ David Lucca (2007) provides microfoundations for the CEE adjustment cost formulation. He shows that these adjustment costs are equivalent, up to a first-order approximation, to a model in which there is time to build and where firms invest in many complementary projects that have uncertain duration.

We choose the following parameter values for our benchmark model. We set $\sigma = 1$, which corresponds to the case of logarithmic utility. We set θ to 1.4, which corresponds to an elasticity of labor supply of 2.5 when preferences take the GHH form. We set the discount factor β to 0.985, implying a quarterly steady-state real interest rate of 1.5 percent. The share of labor in the production function, α , is set to 0.64. We set the value of γ to 0.001, so preferences are close to a GHH specification. We choose the second derivative of the adjustment-cost functions evaluated at the steady state, $\varphi''(1)$, to equal 1.3. Finally, we set the elasticity of $\delta'(u)$ evaluated in the steady state ($\delta''(u)u/\delta'(u)$, where u is the level of utilization in the steady state) to 0.15. The value of $\delta''(u)u/\delta'(u)$ influences the degree of shock amplification present in the economy. When $\delta'''(u)u/\delta'(u)$ is low, the cost of utilization rises slowly with the level of utilization. In this case, the level of capital utilization is highly responsive to shocks, resulting in a powerful amplification mechanism. Since there is little guidance in the literature about appropriate values for $\varphi''(1)$ and $\delta''(u)$, we discuss below the robustness of our results to these parameters. We solve the model by linearizing the equations that characterize the planner's problem around the steady state.

A. News Shocks

Given these parameter values, the model produces aggregate comovement in response to both contemporaneous shocks to A_t or z_t and to news about future values of A_t or z_t . Most macroeconomic models generate aggregate comovement in response to contemporaneous shocks. For this reason, we focus our discussion on the response of our model to news shocks.

The timing of the news shock we consider is as follows. At time zero the economy is in the steady state. At time one, unanticipated news arrives. Agents learn that there will be a 1 percent permanent increase in A_t or z_t beginning two periods later, in period three. Figure 2 depicts the response of the economy to this news. In all cases, there is an expansion in periods one and two in response to positive news about future productivity. Consumption, investment, output, hours worked, average labor productivity, and capital utilization all rise in periods one and two, even though the positive shock occurs only in period three.⁶

Figure 2 shows that the impact of news about A_t is less important than the realization of the A_t shock. An increase in A_t , once it materializes, has an immediate, direct impact on output. On the other hand, news of a future increase in A_t affects output only through changes in the supply of labor and in the amount of capital that is accumulated before the shock arrives.

In contrast, with investment-specific technical change, most of the rise in output occurs in period one, when the news arrives, not in period three, when the z_t shock materializes. This property results from the fact that an increase in z_t does not have a direct effect on output. Output is affected only by changes in the supply of labor and in the amount of capital accumulated both before and after the realization of the shock.

Table 1 shows that there is a wide range of parameters that generate aggregate comovement in response to news about future A_t and z_t . This table is constructed by using our benchmark calibration and changing one parameter at a time to find the range of values for this parameter consistent with aggregate comovement in the period in which the news arrives. We find that adjustments to investment do not have to be high, ($\varphi''(1) > 0.4$), varying utilization can be relatively costly ($\delta''(u)u/\delta'(u) < 2.5$), and the labor supply does not need to be very responsive ($\theta < 10$). The value of γ has to be

⁶ Beaudry and Portier (2007) provide a useful characterization of the class of models that cannot generate aggregate comovement in response to news about future TFP. Our model has preferences and investment adjustment costs that are outside the set of specifications that they consider.

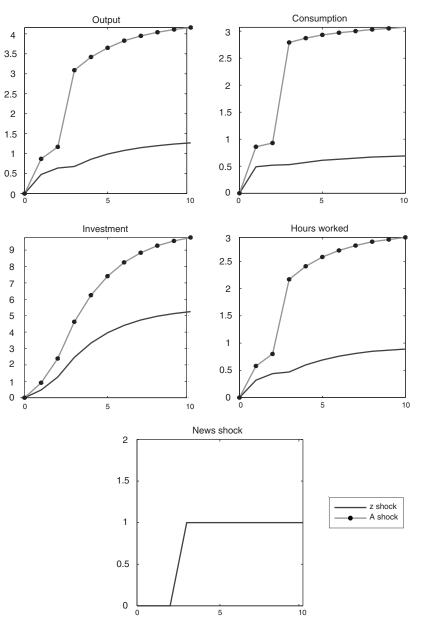


FIGURE 2. ONE-SECTOR MODEL, RESPONSE TO NEWS SHOCKS (Percentage deviation from steady state)

lower than 0.4. Therefore, although the model does not generate aggregate comovement when preferences take the KPR form, short-run wealth effects on the labor supply can still be substantial.

II. The Elements of the One-Sector Model

In this section we discuss the role played by the three features of the model that generate comovement between consumption, investment, output, and hours worked in response to news

One-sector model	News A 0.650 0.370 0.111 2.500			News z 0.400 0.400 0.111 5.000		
Maximum γ						
Minimum adjustment costs, $\varphi''(1)$						
Minimum elasticity of labor supply $(1/(\theta-1))$						
Maximum elasticity of utilization						
Two-sector model	Contemporaneous shocks			News shocks		
	Α	z^{c}	z ⁱ	Α	z^{c}	z^{i}
Maximum γ	0.600	1.000	0.110	0.009	0.006	0.006
Minimum adjustment costs, $\varphi''(1)$	0.010	0.010	0.010	1.100	1.000	1.100
Minimum elasticity of labor supply $(1/(\theta-1))$	0.256	0.001	1.000	1.667	1.667	1.667
Maximum elasticity of utilization	infinity	infinity	2.800	0.300	0.300	0.250

TABLE 1—ROBUSTNESS ANALYSIS

about the future values of A_t or z_t . In discussing the influence of capital utilization and adjustment costs on investment decisions, it is useful to consider a version of the model with GHH preferences ($\gamma = 0$). In this case X_t is constant so, to simplify, we normalize the level of X to one. The first-order conditions for the planner's problem for this version of the model are:

(13)
$$(C_t - \psi N_t^{\theta})^{-\sigma} = \lambda_t,$$

(14)
$$\theta \psi N_t^{\theta-1} = \alpha A_t (u_t K_t)^{1-\alpha} N_t^{\alpha-1},$$

together with (10), (11), and (12).

A. Variable Capital Utilization

To explain the role played by capital utilization, we consider a version of the model with constant capital utilization. To obtain the planner's first-order conditions for this model, we eliminate the first-order condition for u_t , (10), and set $u_t = 1$ in equations (5) and (14), and $\delta(u_t) = \delta$ in equation (6):

(15)
$$\theta \psi N_t^{\theta-1} = \alpha A_t K_t^{1-\alpha} N_t^{1-\alpha}.$$

This equation implies that N_t does not respond to news about future changes in A_t or z_t . The positive wealth effect of future shocks reduces the marginal utility of consumption today, λ_t . Equation (13) implies that C_t rises. When $u_t = 1$, equation (5) implies that investment must fall. Therefore, labor and output do not respond to the news shock, consumption rises, and investment falls. In the case of variable utilization, equation (14) implies that an increase in utilization raises the marginal product of labor. This increase provides an incentive for hours worked to rise.

B. Preferences

To understand the role of preferences in shaping the effects of news about the future, it is useful to study the problem of a worker in our economy. We first consider the response of a worker to a contemporaneous, permanent increase in the real wage, w_t . To simplify, we abstract from uncertainty and assume that the real interest rate is constant and given by $r = 1/\beta - 1$. The worker's problem is to maximize (1) subject to the budget constraint:

$$a_{t+1} = (1+r)a_t + w_t N_t - C_t,$$

to the non-Ponzi game condition, $\lim_{t\to\infty} a_{t+1}/(1+r)^t = 0$, and the initial value of the worker's assets, a_0 . The timing is as follows. At time zero, the worker is in the steady state with a constant wage rate. At time one, there is an unanticipated, 1 percent permanent increase in w_t . The first panel of Figure 3 shows the response of N_t for four different values of γ : zero, 0.001, 0.25, and one. The strongest response of N_t occurs with GHH preferences ($\gamma = 0$). However, in this case, hours worked are not stationary; they rise permanently.⁷ With KPR preferences ($\gamma = 1$), N_t converges back to the steady state after the shock, but its short-run response is very weak. When γ is equal to 0.001 or 0.25, the short-run impact of the wage rise on N_t is in between that obtained with GHH and KPR preferences. Lower values of γ produce short-run responses that are closer to those obtained with GHH preferences. As long as $0 < \gamma \leq 1$, hours worked converge to the steady state.

We now compute the Hicksian wealth effect on hours worked of the real wage increase. We denote by U and U^* the lifetime utility of the worker before and after the permanent increase in w_t , respectively. To calculate the wealth effect, we compute the path of N_t for a worker who does not benefit from the wage increase but who receives an output transfer at time one that raises his utility to U^* . Our results are displayed in the second panel of Figure 3. The wealth effect is zero for GHH preferences and negative for KPR. In both cases the wealth effect is constant over time. When $0 < \gamma < 1$, the wealth effect varies over time. In the long run, this effect is similar to that with KPR preferences. In the short run, the effect is actually positive, helping to raise the labor supply. This positive wealth effect results from the fact that the disutility of work is high when X_t is high.⁸ Since consumption rises over time, X_t also increases over time, and the disutility of work is higher in the future than in the present.

It is easy to see why it is generally difficult to generate an expansion in response to good news about the future with KPR preferences. Suppose we tell a worker with KPR preferences that his real wage goes up in the future but not in the present. This news generates a wealth effect that reduces the worker's supply of labor today.

C. Investment Adjustment Costs

The first-order condition for labor, (14), implies that, unless the rate of capital utilization changes, N_t does not respond to news about the future. The first-order condition for capital utilization, (10), implies that η_t / λ_t must fall in order for u_t to rise. A fall in η_t / λ_t requires the presence of adjustment costs to investment. Without adjustment costs, $\eta_t / \lambda_t = z_t$ and the capital utilization equation reduces to

$$(1-\alpha)A_tu_t^{-\alpha}K_t^{1-\alpha}N_t^{\alpha}=z_t\delta'(u_t)K_t.$$

⁷ A simple way to make hours stationary when preferences take a GHH form is to introduce a trend in the utility function such that the utility cost of supplying labor increases at the same rate as the real wage. This trend can be justified by appealing to home production. However, we find that, in models with stochastic technical progress, this formulation can generate large recessions through an implausible mechanism. In periods with low rates of technical progress, hours worked can fall significantly because the trend increase in the utility cost of supplying labor is not offset by increases in the real wage rate.

⁸ The disutility of labor at time t is given by $(C_t - \psi N_t^{\theta} X_t)^{-\sigma} \theta \psi N_t^{\theta-1} X_t$. It is easy to see that this disutility is increasing in X_t .

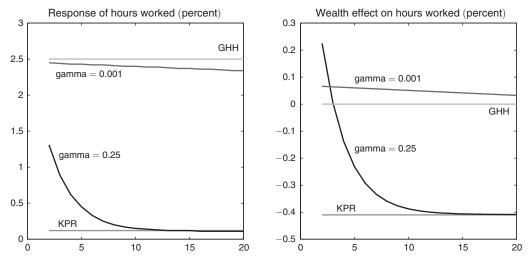


FIGURE 3. WEALTH EFFECTS ON THE LABOR SUPPLY OF A 1 PERCENT PERMANENT REAL WAGE INCREASE

Since z_t and A_t both remain constant at time two, this equation along with (14) implies that both N_t and u_t remain constant.

We can now put all the elements of the model together to explain how we can generate comovement in response to news about the future. A future increase in A_t or z_t implies that investment will rise in the future. In the presence of investment adjustment costs, it is optimal to smooth investment over time, and so investment rises in period one. An increase in investment leads to a decline in η_t / λ_t , the value of installed capital in units of consumption. This fall occurs because the adjustment costs embedded in (6) imply that higher levels of investment today reduce the cost of investment tomorrow.

The fall in η_t / λ_t lowers the value of installed capital. Capital is less valuable because it is less costly to replace, so it is efficient to increase today's rate of capital utilization. The rise in utilization increases the marginal product of labor. This increase provides an incentive for hours worked to rise. As long as the wealth effect on the supply of labor is small enough, hours rise and we see an expansion in response to good news about future values of A_t or z_t .

D. Implications for the Value of the Firm

The ratio η_t / λ_t is equal to Tobin's marginal q, which is the value of an additional unit of installed capital. Therefore, to generate comovement, good news about future productivity must lead to a fall in Tobin's marginal q. A natural question is: does this fall imply a decline in the value of firm? The answer is no because with CEE adjustment costs, average q (the ratio of firm value to the capital stock) is different from marginal q. To see this result, define the end-of-period value of the firm as the result of the following problem:⁹

$$V(K_1, I_0, A_0, z_0) = \max E_0 \sum_{t=1}^{\infty} \frac{\beta^t \lambda_t}{\lambda_0} \left[A_t (u_t K_t)^{1-\alpha} N_t^{\alpha} - w_t N_t - I_t / z_t \right],$$

⁹ Our motivation for using the end-of-period value of the firm is as follows. In a discrete-time version of the Hayashi (1982) model, marginal and average q coincide only when they are based on the end-of-period value of the firm. This timing is not required in continuous time. See Jaimovich and Rebelo (2008).

subject to (6). The expression $V(K_1, I_0, A_0, z_0)$ represents the time-zero value of the firm after it receives the cash flow $(Y_0 - w_0N_0)$, incurs investment expenses (I_0/z_0) , and chooses values for I_1 and K_1 . We show in Jaimovich and Rebelo (2008) that $V(K_1, I_0, z_0)$ can be written as

(16)
$$V(K_1, I_0, A_0, z_0) = \frac{\eta_0}{\lambda_0} (1 - \delta) K_0 + I_0 \left\{ \frac{1}{z_0} + \frac{\eta_0}{\lambda_0} \left[\varphi' \left(\frac{I_0}{I_{-1}} \right) \left(\frac{I_0}{I_{-1}} \right) \right] \right\}.$$

The value of the firm is the sum of two components. The first component, $(\eta_0 / \lambda_0)(1 - \delta)K_0$, is the value of the capital stock. The second component is the value of investment. This second term is present because higher investment today lowers the cost of higher investment in the future.

News about future A_t or z_t reduces the value of the capital stock but can raise the value of investment. For our parameter values, the value of the capital falls and the value of the investment rises. The first effect dominates, so the overall value of the firm falls.

An easy way to overturn this implication without changing any of the other key properties of our model is to introduce decreasing returns to scale into the production function. We find that the value of the firm rises in response to news about future increases in A_t or z_t when the degree of returns to scale is lower than 0.9. A production function that exhibits decreasing returns to capital and labor can be written as: $Y_t = A_t (u_t K_t)^{\alpha_1} N_t^{\alpha_2} T^{1-\alpha_2-\alpha_3}$, where $\alpha_1 + \alpha_2 < 1$, and T can be interpreted as a production factor that belongs to the firm.¹⁰ The value of this factor increases whenever there is an increase in the future values of A_t or z_t .¹¹ This effect produces an overall increase in the value of the firm.

III. The Two-Sector Model

To study sectoral comovement, we consider a two-sector version of our model with a consumption sector and an investment sector.¹² Preferences are described by (1) and (2). The resource constraint (5) is replaced with the following two equations:

(17)
$$C_t = A_t z_t^c (u_t^c K_t^c)^{1-\alpha} (N_t^c)^{\alpha},$$

(18)
$$I_t^c + I_t^i = A_t z_t^i (u_t^i K_t^i)^{1-\alpha} (N_t^i)^{\alpha},$$

where the superscripts c and i denotes variables that are specific to the consumption and investment sector, respectively. The capital accumulation equation, (6), is replaced by

(19)
$$K_{t+1}^{c} = I_{t}^{c} \left[1 - \varphi \left(\frac{I_{t}^{c}}{I_{t-1}^{c}} \right) \right] + \left[1 - \delta(u_{t}^{c}) \right] K_{t}^{c},$$

¹² See Huffman and Mark Wynne (1999) for evidence on sectoral comovement. These authors propose a model that generates sectoral comovement in response to contemporaneous shocks. Their model does not produce comovement in response to news shocks because it has no forces that can compensate for the negative wealth effect on the labor supply of news about future fundamentals.

 $^{^{10}}$ A degree of returns to scale of 0.9 is consistent with the estimates in Craig Burnside (1996). The factor T can be interpreted as organizational capital. See Prescott and Michael Visscher (1980).

¹¹ Another avenue to generate an increase in the value of the firm in response to news shocks is to introduce adjustment costs to labor (see Jaimovich and Rebelo 2008). These adjustment costs add a term similar to the investment value to the overall value of the firm.

THE AMERICAN ECONOMIC REVIEW

SEPTEMBER 2009

(20)
$$K_{t+1}^{i} = I_{t}^{i} \left[1 - \varphi \left(\frac{I_{t}^{i}}{I_{t-1}^{i}} \right) \right] + [1 - \delta(u_{t}^{i})] K_{t}^{i}.$$

Finally, we introduce the condition

$$N_t^c + N_t^i = N_t.$$

Before turning to our results, it is useful to review Christiano and Fitzgerald's (1998) discussion of why sectoral comovement of hours worked cannot arise with KPR preferences. Combining the first-order conditions for consumption and labor for the case of $\gamma = 1$ yields the following expression:

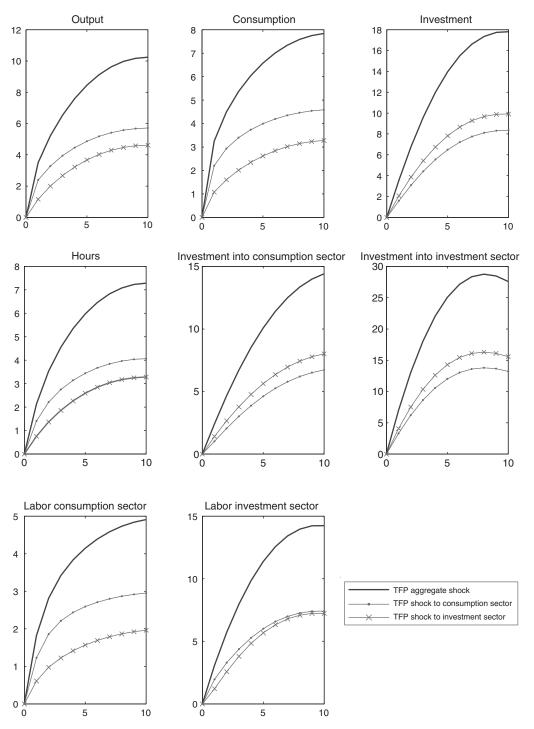
(21)
$$\theta \psi (N_t^c + N_t^i)^{\theta - 1} = \alpha / N_t^c.$$

Equation (21) implies that N_t^c and N_t^i cannot move in the same direction. The analogous equation for the case of GHH preferences is

(22)
$$\theta \psi (N_t^c + N_t^i)^{\theta - 1} = \alpha \, \frac{C_t}{N_t^c}.$$

Equation (22) shows that with GHH preferences it is possible for N_t^c and N_t^i to move in the same direction. The fact that comovement is not possible with $\gamma = 1$ but is possible with $\gamma = 0$ suggests that wealth effects on the labor supply plays a crucial role in determining sectoral comovement.¹³ Our preferences allow us to consider intermediate values of γ to obtain a better understanding of the role played by short-run wealth effects on the labor supply in generating sectoral comovement.

We now discuss numerical results for a version of the model calibrated with the same parameter values used for the one-sector model. Figure 4 shows the effects of three different permanent, contemporaneous 1 percent shocks. The first shock is an aggregate TFP shock (A_t) . The second is a sectoral shock to TFP in the consumption sector (z_t^c) . The third is a sectoral shock to TFP in the investment sector (z_t^i) . The timing is as follows. The economy is in the steady state at time zero and the shock occurs at time one. It is clear from Figure 4 that the model generates both aggregate and sectoral comovement in response to all three shocks.


Figure 5 shows the response to news about the same three shocks $(A_t, z_t^c, \text{ and } z_t^i)$. The timing is as follows. The economy is in the steady state at time zero. At time one the economy learns that there is a permanent, 1 percent increase in one of the three shocks in period three. Figure 5 shows that the model generates both aggregate and sectoral comovement in response to news about all three shocks.

A. Robustness

To understand better the mechanism that drives the results displayed in Figures 4 and 5, we now discuss the range of parameters that generate sectoral comovement with respect to

1108

¹³ The results in Riccardo DiCecio (2005) also suggest that wealth effects play a central role in generating sectoral comovement in response to contemporaneous shocks. In his model there is sectoral comovement because wages are sticky. Workers have to supply the number of hours demanded by firms at a fixed nominal wage, and so the wealth effect on the labor supply plays no role in the short run.

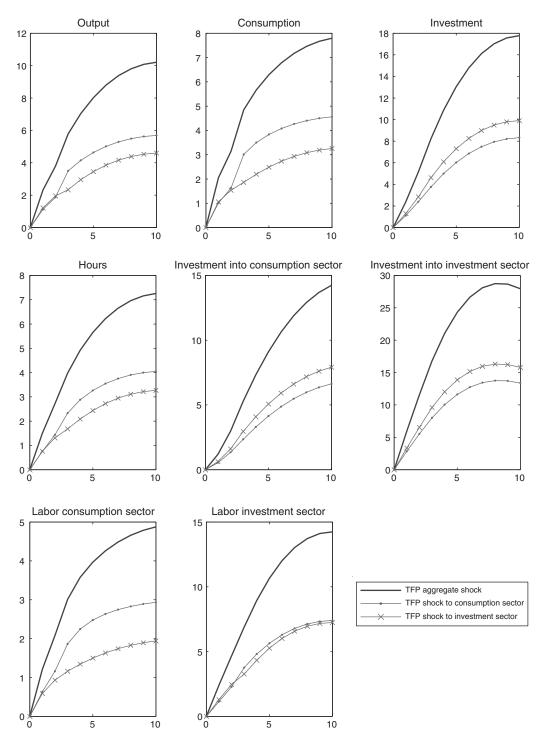


FIGURE 5. EFFECTS OF NEWS SHOCKS (Percentage deviations from steady state)

the one-sector model.

contemporaneous and news shocks. We follow the same procedure we use to study robustness in

Table 1 shows that it is easy to generate comovement with respect to contemporaneous shocks to z_t^c , even with KPR preferences. Generating sectoral comovement in response to contemporaneous shocks to A_t requires only that short-run wealth effects be somewhat weaker than those implied by KPR ($\gamma < 0.6$). In both of these cases minimal adjustment costs to investment are required and variable utilization is not necessary. It is much more difficult to generate sectoral comovement in response to contemporaneous shocks to z_t^i . We need very weak short-run wealth effects ($\gamma < 0.11$) and a responsive labor supply ($\theta < 2$). We also need variable utilization, but increasing utilization can be relatively costly ($\delta''(u)u/\delta'(u) < 2.8$).

Finally, it is essential to have low values of γ ($\gamma < 0.006$) to obtain sectoral comovement in response to news about A_t , z_t^c , and z_t^i . We also need moderate investment adjustment costs ($\varphi''(1) > 1$), a low elasticity of the cost of utilization with respect to the rate of utilization ($\delta''(u)u/\delta'(u) < 0.25$), and a responsive labor supply ($\theta < 1.6$).

We find that sectoral comovement of labor and of investment are driven by different features of the model. Low values of γ are essential to generate comovement of labor in the two sectors. Investment adjustment costs are important to generate comovement in sectoral investment.

B. Adjustment Costs to Labor

We now consider a version of our model that incorporates adjustment costs to labor, along the lines of Thomas Sargent (1978) and Timothy Cogley and James M. Nason (1995). We replace equations (17) and (18) with the following two equations:

$$C_{t} + N_{t}^{c}\phi(N_{t}^{c}/N_{t-1}^{c}) = A_{t}z_{t}^{c}(u_{t}^{c}K_{t}^{c})^{1-\alpha}(N_{t}^{c})^{\alpha},$$

$$I_{t}^{c} + I_{t}^{i} + N_{t}^{i}\phi(N_{t}^{i}/N_{t-1}^{i}) = A_{t}z_{t}^{i}(u_{t}^{i}K_{t}^{i})^{1-\alpha}(N_{t}^{i})^{\alpha},$$

where $\phi(\cdot)$ is a function such that $\phi(1) = \phi'(1) = 0$, $\phi'(\cdot) \ge 0$, and $\phi''(\cdot) > 0$.

We find that adjustment costs to labor help generate aggregate comovement with respect to news shocks. These costs provide an incentive to increase the labor supply immediately in anticipation of future increases in the labor supply that occur in response to the shock. In the presence of adjustment costs, it is not efficient to reduce the labor supply today and then increase it in the future once the shock occurs. As a result, the short-run wealth effect on the labor supply can be stronger than in the benchmark model. Indeed, we find that the introduction of labor adjustment costs allows the model to generate aggregate comovement in the one-sector model in response to news about A_t or z_t for a much wider range of parameters, including high values of γ . However, we find that adjustment costs to labor do not help with generating sectoral comovement in response to news shocks in the two-sector model.

IV. Model Simulations

We have shown that our model can generate expansions and contractions in response to good news about future productivity. One natural question is whether this success comes at a cost of the model's ability to generate empirically recognizable business fluctuations. That is, can the model, when calibrated with the same parameters used in the experiments discussed so far, generate volatility, comovement, and persistence of macroeconomic aggregates that are empirically plausible? To answer this question we simulate a version of our model driven by stochastic, investment-specific technical progress and compute the standard set of business-cycle statistics.¹⁴ We assume that $\log(z_t)$ follows a random walk:

$$\log(z_{t+1}) = \log(z_t) + \varepsilon_{t+1}.$$

We use the method proposed by George Tauchen and Robert Hussey (1991) to estimate a twopoint Markov chain for ε_t . We measure z_t using quarterly data on the US real price of investment for the period 1947:I to 2004:IV. These data were constructed by Fisher (2006) using National Income and Product Accounts series for the consumption deflator and Jason Cummins and Giovanni Violante's (2002) updated series for Robert Gordon's (1990) quality-adjusted producer durable-equipment deflator.¹⁵ The support of the estimated Markov chain is {0.00, 0.0115}. The transition matrix is

(23)
$$\boldsymbol{\pi} = \begin{bmatrix} 0.7378 & 0.2622 \\ 0.2622 & 0.7378 \end{bmatrix}.$$

We generate 1,000 model simulations with 230 periods each. For each simulation, we detrend the logarithm of the relevant time series with the Hodrick–Prescott (HP) filter using a smoothing parameter of 1,600. In our main calibration we consider a setting in which agents receive noisy news about the future. Our measure of news is based on the Livingston survey of output forecasts.¹⁶ The Livingston survey pools professional forecasters to obtain forecasts of different economic variables. Two-quarter-ahead GDP forecasts are available for the period 1971:IV–2003:IV. To study the robustness of the results to different assumptions about the timing of information arrival, we simulate the model under two additional information scenarios. In the first scenario agents receive no news. In the second scenario agents receive perfect information about z_i^t .

A. Noisy News

Forecasts of future rates of investment-specific technical change are not available for our sample, so it is difficult to choose the precision of signals about ε_{t+2} . For this reason, we consider a setting in which we provide agents with a signal, S^y , for whether the growth rate of output two periods later is going to be above or below the average. The signal has two values, high (*H*) or low (*L*). We choose the signal to have the same precision as the Livingston survey of output forecasts. To obtain a discrete signal with two possible values we use the Tauchen and Hussey (1991) method to estimate a two-point Markov chain for the Livingston survey forecasts. The precision of these forecasts is as follows:

(24)
$$\Pr(g_{t+2}^{y} \ge \operatorname{Average}(g^{y}) \mid S^{y} = H) = 0.70,$$
$$\Pr(g_{t+2}^{y} < \operatorname{Average}(g^{y}) \mid S^{l} = L) = 0.58,$$

¹⁴ Jonas Fisher (2006) and Alejandro Justiniano and Giorgio Primiceri (2008) argue that investment-specific technical progress is the most important determinant of output variability.

¹⁵ We thank Ricardo DiCecio for providing us with an updated version of this time series.

¹⁶ See Dean Croushore (1993) for a description of the Livingston survey. The Survey of Professional Forecasters (SPF) is an alternative source of output growth forecasts for the US economy. We also use SPF forecasts to calibrate our model. The results are similar to those we obtain with the Livingston forecasts.

where g_{t+2}^{y} represents the growth rate of output at time t + 2. The forecast precision is higher in expansions than in recessions.¹⁷

To provide agents in the model with a signal on output with the same precision as the Livingston survey forecast, we implement the following algorithm. First, we assume values q_1 and q_2 for the following conditional probabilities:

$$\Pr(S^{y} = H \mid \varepsilon_{t+2} = H) = q_{1},$$
$$\Pr(S^{y} = L \mid \varepsilon_{t+2} = L) = q_{2}.$$

We simulate time series for ε_t and generate S^y according to q_1 and q_2 . Agents receive these signals and forecast ε_{t+2} using both the signal and the current realization of ε_t :

$$\Pr(\varepsilon_{t+2} = H \mid S^{y} = i, \varepsilon_{t}) = \frac{\Pr(S^{y} = i \mid \varepsilon_{t+2} = H) \Pr(\varepsilon_{t+2} = H \mid \varepsilon_{t})}{\sum_{j=H,L} \Pr(S^{y} = i \mid \varepsilon_{t+2} = j) \Pr(\varepsilon_{t+2} = j \mid \varepsilon_{t})}$$

We simulate the model and compute

$$\Pr(g_{t+2}^{y} \ge \operatorname{Average}(g^{y}) \mid S^{y} = H),$$

$$\Pr(g_{t+2}^{y} < \operatorname{Average}(g^{y}) \mid S^{l} = L).$$

We then revise the values of q_1 and q_2 until the precision of S^y in the model coincides with the precision (24) estimated in the data. We obtain $q_1 = 0.99$ and $q_2 = 0.62$.

Column 5 of Table 2 shows the results for this version of the model. This model generates business cycle moments that are similar to those in postwar US data reported in column 1. Consumption, investment, and hours worked are procyclical. Investment is more volatile than output, consumption is less volatile than output, and the volatility of hours is similar to that of output. The model accounts for 64 percent of the standard deviation of output in the data.

B. Robustness

To understand the robustness of our results to different assumptions about the timing of information arrival we consider two additional cases. In the first case agents receive no news about the future. In the second case agents receive a perfect signal about ε_{t+2} .

Table 2 reports moments for US data and model simulated data. These moments were computed using data detrended with the HP filter with a smoothing parameter of 1,600. Column 4 in Table 2 summarizes the business cycle properties of a version of our model in which the economy receives no news. Forecasts of future values of ε_t are based solely on the Markov chain (23). This version of the model generates business cycle moments that are similar to those in the postwar US data we report in column 1. Consumption, investment, and hours worked are procyclical. Investment is more volatile than output, consumption is less volatile than output, and the volatility of hours is similar to that of output. Column 6 of Table 2 summarizes the business cycle properties of our model when at time *t* agents receive perfect signals about ε_{t+2} , the growth rate

¹⁷ Using the SPF, Stijn Van Nieuwerburgh, and Laura Veldkamp (2006) also find that forecast precision is higher in expansions than in recessions.

	Data			Model			
	1947-2004	1947–1983	1983-2004	No signal	Signal with Livingston- survey precision	Perfect signal	
Standard deviation output	1.56	1.88	0.97	1.10	1.00	0.94	
Standard deviation bours	1.50	1.88	1.00	0.78	0.71	0.67	
Standard deviation investment	4.84	5.41	3.69	3.45	3.33	3.30	
Standard deviation consumption	1.11	1.22	0.75	0.81	0.75	0.73	
Correlation output and hours	0.86	0.88	0.87	1.00	1.00	1.00	
Correlation output and investment	0.89	0.75	0.91	0.97	0.93	0.85	
Correlation output and consumption	0.77	0.68	0.75	0.94	0.92	0.89	
Sum of 4 coefficients in $AR(4)$	0.77	0.65	0.86	0.71	0.78	0.80	
Number of recessions	14			9	9	9	

TABLE 2—BUSINESS CYCLE MOMENTS

of z_t in two periods. This model generates patterns of volatility and comovement that are similar to those of the model with no news.

To summarize, columns 4 and 6 show that the business cycle implications of our model are robust to changes in the information structure of the shocks. Providing the economy with news about the future does not alter the basic patterns of comovement or relative volatility of the major macroeconomic aggregates. Therefore, the business cycle properties of our model are robust to the timing of information arrival. In contrast, the business cycle properties of the neoclassical one-sector growth model depend heavily on the timing of information arrival.

C. News and Volatility

It is well known that in the past 60 years output volatility has declined and output persistence has increased in virtually all developed countries. These facts are documented for the United States in Table 2. Columns 2 and 3 provide statistics for the United States for the period 1947–1982 and 1983–2003. The volatility of output declines from 1.88 in the first sample to 0.97 in the second sample. The persistence of output, as measured by the sum of the four estimated coefficients in an AR(4) process for output, rises from 0.65 to 0.86.

James Stock and Mark Watson (2003) document both the reduction in output volatility and the increase in persistence for the G7 countries, and discuss several possible explanations, including better monetary policy, changes in sectoral composition toward sectors with lower volatility, and declines in the volatility of the shocks to the economy.

Our model provides a complementary explanation for the volatility decline and persistence increase. Advances in information technology have led to dramatic increases in the volume of available data and in the ability to process these data. Let us assume that the increase in information volume has made it easier to forecast the future. Under this assumption, we can think of the increased volume of information as moving the economy from column 4 of Table 2 (no news) toward column 6. An increase in the availability of news makes it easier to forecast the future, thus reducing economic volatility and increasing persistence.

Evidence from the Livingston survey is consistent with the idea that business cycles have become easier to forecast. The survey contains unemployment forecasts at a six-month horizon from the fourth quarter of 1961 to the fourth quarter of 2003. The average absolute percentage forecast error is 3.3 percent in the first part of the sample (1961:IV–1982:IV) but only 1.5 percent in the second part of the sample (1983:I–2003:IV). Therefore, the forecast error declined by 79 percent. This increase in forecast precision cannot be accounted for solely by the reduction in unemployment volatility. The standard deviation of log(unemployment) declined only by 23 percent between the first and the second part of the sample.

D. Recessions

According to our estimated support of the Markov chain, the rate of technical progress is always positive. This Markov process is a good approximation to the behavior of investment-specific technical progress in the data. Declines in z_t are rare (they occur in only 6 percent of the quarters in our sample) and are small in magnitude. The average percentage decline in z_t in quarters in which z_t falls is 0.8 percent.

The absence of technical regress in our calibration raises the question of whether the model can generate recessions.¹⁸ To study this question we first describe a simple method to determine the timing of recessions. Our strategy is similar to that used by the Business Cycle Dating Committee of the National Bureau of Economic Research (NBER) for comparing different recessions (see Robert Hall et al. 2003). It is also reminiscent of the methods used by Arthur Burns and Wesley Mitchell (1946) in their study of the properties of US business cycles.

To date the beginning of US recessions, we compute trend output using the HP filter with a smoothing parameter of 1,600. We identify periods in which output is below trend for at least two consecutive quarters, say t and t + 1. Recessions are dated as starting at time t - 1. This timing method produces recession dates that are similar to those chosen by the NBER dating committee.¹⁹

We compute the average time series for different macroeconomic variables during recession periods for the US economy. The solid line in Figure 6 shows the average behavior during recessions of the HP-detrended logarithm of real GDP, real consumption of nondurables and services, real private investment, and hours worked. Time zero is the quarter in which the recession begins. The dashed lines represent the 95 percent confidence interval around the average for each variable. The fall from peak to trough in output, consumption, investment, and hours is 1.8 percent, 0.7 percent, 4.3 percent, and 1.7 percent, respectively.

The dashed line in Figure 6 shows the average recession in our model. The model captures the salient features of recessions in the data. The last graph in this figure, which displays the behavior of investment-specific technical change in the average recession, shows an interesting feature of the recessions generated by the model. On average, recessions occur when there is a high contemporaneous rate of change in investment-specific technical progress, but the economy learns that two periods later technical change will slow down. It is impossible to identify what causes recessions in our model by lining up the usual suspects—contemporaneous shocks to the economy. Recessions are driven not by bad shocks today but by lackluster news about the future.

¹⁸ Robert G. King and Rebelo (1999) propose a real business cycle model that generates recessions in the absence of negative technology shocks. Their model shares one key feature with our model, which is variable capital utilization, but it relies on a much higher elasticity of labor supply.

¹⁹ The HP procedure produces six recessions whose starting dates coincide with those chosen by the NBER: 1948:IV, 1957:III, 1960:II, 1980:I, 1981:III, and 1990:III. There are four other recessions in which the HP procedure produces recession dates that are within two quarters of the NBER dates (indicated in parentheses): 1953:III (1953:II), 1969:III (1969:IV), 1974:II (1974:III), and 2001:II (2001:I). The HP procedure identifies four additional recessions starting in 1962:II, 1986:III, and 1994:III. None of the latter episodes involves a fall in output, which suggests that our procedure corresponds to a broader definition of recession than that of the NBER.

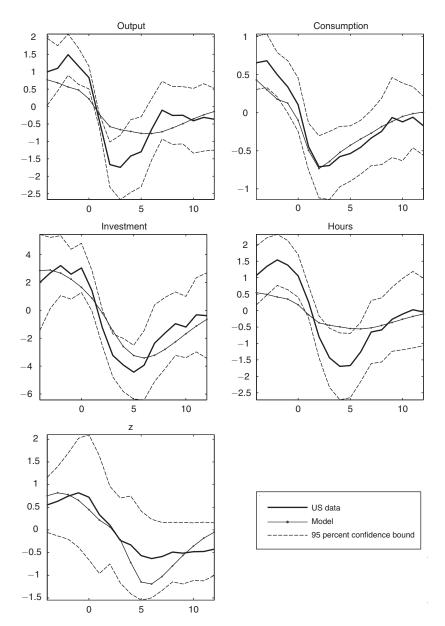


FIGURE 6. AVERAGE RECESSION IN THE MODEL AND IN US DATA

This property is generally not present in a version of the model in which agents do not receive news about the future. In the no-news version of the model, recessions tend to coincide with periods in which the rate of investment-specific technical change is low.

The model generates only 9 recessions, as opposed to 14 in the data. In addition, recessions are more shallow in the model than in the data. These two differences between the implications of the model and US data occur in part because the US economy is affected by shocks, such as oil shocks, that are absent from the model.

V. Conclusion

Aggregate and sectoral comovement are central features of business cycle data. Therefore, the ability to generate comovement is a natural litmus test for macroeconomic models. But it is a test that most existing models fail. In this paper we propose a unified model that generates both aggregate and sectoral comovement in response to both contemporaneous shocks and news shocks about fundamentals. The fundamentals that we consider are aggregate TFP shocks, TFP shocks to the consumption and investment sector, and shocks to investment-specific technical change. The model has three key elements: variable capital utilization, adjustment costs to investment, and a new form of preferences that allows us to parameterize the strength of short-run wealth effects on labor supply. We find that, in order for comovement to be robust to the timing and nature of the shocks that buffet the economy, short-run wealth effects on the labor supply must be weak.

REFERENCES

- Abel, Andrew B., and Olivier J. Blanchard. 1983. "An Intertemporal Model of Saving and Investment." *Econometrica*, 51(3): 675–92.
- Barro, Robert J., and Robert G. King. 1984. "Time-Separable Preferences and Intertemporal-Substitution Models of Business Cycles." *Quarterly Journal of Economics*, 99(4): 817–39.
- Beaudry, Paul, and Franck Portier. 2004. "An Exploration into Pigou's Theory of Cycles." *Journal of Monetary Economics*, 51(6): 1183–1216.
- Beaudry, Paul, and Franck Portier. 2007. "When Can Changes in Expectations Cause Business Cycle Fluctuations in Neo-Classical Settings?" *Journal of Economic Theory*, 135(1): 458–77.
- Bernanke, Ben S., Mark Gertler, and Simon Gilchrist. 1999. "The Financial Accelerator in a Quantitative Business Cycle Framework." In *Handbook of Macroeconomics*. Volume 1C, ed. John B. Taylor and Michael Woodford, 1341–93. Amsterdam: North-Holland.
- Beveridge, William H. 1909. Unemployment: A Problem of Industry. London: Longmans Green.
- Blanchard, Olivier. 2007. "Adjustment within the Euro: The Difficult Case of Portugal." *Portuguese Economic Journal*, 6(1): 1–21.
- Burns, Arthur, and Wesley Mitchell. 1946. *Measuring Business Cycles*. New York: National Bureau of Economic Research.
- Burnside, Craig. 1996. "Production Function Regressions, Returns to Scale, and Externalities." Journal of Monetary Economics, 37(2): 177–201.
- Christiano, Lawrence J., and Terry J. Fitzgerald. 1998. "The Business Cycle: It's Still a Puzzle." Federal Reserve Bank of Chicago Economic Perspectives, 22(4): 56–83.
- **Christiano, Lawrence J., Martin Eichenbaum, and Charles Evans.** 2005. "Nominal Rigidities and the Dynamic Effects of a Shock to Monetary Policy." *Journal of Political Economy*, 113(1): 1–45.
- Christiano, Lawrence, Cosmin Ilut, Roberto Motto, and Massimo Rostagno. 2007. "Monetary Policy and a Stock Market Boom-Bust Cycle." Unpublished.
- Clark, John Maurice. 1934. Strategic Factors in Business Cycles. Boston: National
- Bureau of Economic Research.
- Cochrane, John H. 1994. "Shocks." Carnegie-Rochester Conference Series on Public Policy, 41: 295–364.
- Cogley, Timothy, and James M. Nason. 1995. "Output Dynamics in Real-Business-Cycle Models." American Economic Review, 85(3): 492–511.
- Croushore, Dean. 1993. "Introducing: The Survey of Professional Forecasters." Federal
- Reserve Bank of Philadelphia Business Review, November/December: 3-13.
- Cummins, Jason G., and Giovanni L. Violante. 2002. "Investment-Specific Technical Change in the United States (1947–2000): Measurement and Macroeconomic Consequences." *Review of Economic Dynamics*, 5(2): 243–84.
- Danthine, Jean-Pierre, John B. Donaldson, and Thore Johnsen. 1998. "Productivity Growth, Consumer Confidence and the Business Cycle." *European Economic Review*, 42(6): 1113–40.
- Denhaan, Wouter J., and Georg Kaltenbrunner. 2005. "Growth Expectations and Business Cycles." Unpublished.

- **DiCecio, Riccardo.** 2005. "Comovement: It's Not a Puzzle." Federal Reserve Bank of St. Louis Working Paper 2005–035.
- Fisher, Jonas D. M. 2006. "The Dynamic Effects of Neutral and Investment-Specific Technology Shocks." Journal of Political Economy, 114(3): 413–51.
- Gilchrist, Simon, and John Leahy. 2002. "Monetary Policy and Asset Prices." Journal of Monetary Economics, 49(1): 75–97.
- Gordon, Robert J. 1990. The Measurement of Durable Goods Prices. Chicago: University of Chicago Press.
- Greenwood, Jeremy, Zvi Hercowitz, and Gregory Huffman. 1988. "Investment, Capacity Utilization, and the Real Business Cycle." *American Economic Review*, 78(3): 402–17.
- Greenwood, Jeremy, Zvi Hercowitz, and Per Krusell. 2000. "The Role of Investment-Specific Technological Change in the Business Cycle." *European Economic Review*, 44(1): 91–115.
- Hall, Robert, Martin Feldstein, Jeffrey Frankel, Robert Gordon, Christina Romer, David Romer, and Victor Zarnowitz. 2003. "The NBER's Recession Dating Procedure." http://www.nber.org/cycles/recessions.pdf.
- Hayashi, Fumio. 1982. "Tobin's Marginal q and Average q: A Neoclassical Interpretation." *Econometrica*, 50(1): 213–24.
- Huffman, Greg W., and Mark A. Wynne. 1999. "The Role of Intratemporal Adjustment Costs in a Multisector Economy." Journal of Monetary Economics, 43(2): 317–50.
- **Imbens, Guido W., Donald B. Rubin, and Bruce Sacerdote.** 1999. "Estimating the Effects of Unearned Income on Labor Supply, Earnings, Savings, and Consumption: Evidence from a Survey of Lottery Players." National Bureau of Economic Research Working Paper 7001.
- Jaimovich, Nir, and Sergio Rebelo. 2008. "Tobin's Marginal q and Average q Revisited." Unpublished.
- Justiniano, Alejandro, and Giorgio Primiceri. 2008. "The Time Varying Volatility of Macroeconomic Fluctuations." *American Economic Review*, 98(3): 604–41.
- King, Robert G., Charles I. Plosser, and Sergio Rebelo. 1988. "Production, Growth and Business Cycles: I. The Basic Neoclassical Model." *Journal of Monetary Economics*, 21(2/3): 195–232.
- King, Robert G., and Sergio T. Rebelo. 1999. "Resuscitating Real Business Cycles." In Handbook of Macroeconomics. Volume 1C, ed. John B. Taylor and Michael Woodford, 927–1007. Amsterdam: North-Holland.
- Lorenzoni, Guido. 2005. "Imperfect Information, Consumers' Expectations and Business Cycles." Unpublished.
- Lucas, Robert E., Jr. 1977. "Understanding Business Cycles." *Carnegie-Rochester Conference Series on Public Policy*, 5: 7–29.
- Lucas, Robert E., Jr., and Edward C. Prescott. 1971. "Investment Under Uncertainty." *Econometrica*, 39(5): 659–81.
- Lucca, David. 2007. "Resuscitating Time-to-Build." Unpublished.
- Pigou, Arthur. 1927. Industrial Fluctuations. London: MacMillan.
- Prescott, Edward C., and Michael Visscher. 1980. "Organization Capital." *Journal of Political Economy*, 88(3): 446–61.
- Sargent, Thomas J. 1978. "Estimation of Dynamic Labor Demand Schedules under Rational Expectations." Journal of Political Economy, 86(6): 1009–44.
- Stock, James H., and Mark W. Watson. 2003. "Has the Business Cycle Changed? Evidence and Explanations." Paper presented at Federal Reserve Board Kansas City Symposium, Jackson Hole, Wyoming.
- Tauchen, George, and Robert Hussey. 1991. "Quadrature-Based Methods for Obtaining Approximate Solutions to Nonlinear Asset Pricing Models." *Econometrica*, 59(2): 371–96.
- Van Nieuwerburgh, Stijn, and Laura Veldkamp. 2006. "Learning Asymmetries in Real Business Cycles." Journal of Monetary Economics, 53(4): 753–72.

This article has been cited by:

- 1. Syed Zahid Ali, Irfan A. Qureshi. 2021. Anticipated versus unanticipated productivity shocks and hours-worked. International Review of Economics & Finance 72, 547-572. [Crossref]
- 2. Maria Bolboaca, Sarah Fischer. 2021. Unraveling News: Reconciling Conflicting Evidence. *The B.E. Journal of Macroeconomics*, ahead of print. [Crossref]
- Keshab Bhattarai, Sushanta K. Mallick, Bo Yang. 2021. Are global spillovers complementary or competitive? Need for international policy coordination. *Journal of International Money and Finance* 110, 102291. [Crossref]
- 4. Fidel Perez-Sebastian, Ohad Raveh, Frederick van der Ploeg. 2021. Oil discoveries and protectionism: Role of news effects. *Journal of Environmental Economics and Management* 132, 102425. [Crossref]
- 5. Amélie Barbier-Gauchard, Thierry Betti. 2021. Spillover effects of fiscal policy in a monetary union: Why do fiscal instruments matter?. *Bulletin of Economic Research* **73**:1, 1-33. [Crossref]
- 6. Kenza Benhima, Céline Poilly. 2021. Does demand noise matter? Identification and implications. Journal of Monetary Economics 117, 278-295. [Crossref]
- 7. Cosmin Ilut, Hikaru Saijo. 2021. Learning, confidence, and business cycles. *Journal of Monetary Economics* 117, 354-376. [Crossref]
- 8. Can Tian. 2021. Input-output linkages in Pigouvian industrial fluctuations. *Journal of Monetary Economics* 117, 1078-1095. [Crossref]
- 9. Wataru Miyamoto, Thuy Lan Nguyen. 2020. The expectational effects of news in business cycles: Evidence from forecast data. *Journal of Monetary Economics* **116**, 184-200. [Crossref]
- 10. Ryan Chahrour, Gaetano Gaballo. 2020. Learning from House Prices: Amplification and Business Fluctuations. *The Review of Economic Studies* 26. . [Crossref]
- Albert Queralto. 2020. A model of slow recoveries from financial crises. *Journal of Monetary Economics* 114, 1-25. [Crossref]
- 12. George-Marios Angeletos, Fabrice Collard, Harris Dellas. 2020. Business-Cycle Anatomy. *American Economic Review* 110:10, 3030-3070. [Abstract] [View PDF article] [PDF with links]
- CHRISTIAN BREDEMEIER, FALKO JUESSEN, ROLAND WINKLER. 2020. Fiscal Policy and Occupational Employment Dynamics. *Journal of Money, Credit and Banking* 52:6, 1527-1563. [Crossref]
- 14. Enrique Alberola, Carlos Urrutia. 2020. Does informality facilitate inflation stability?. *Journal of Development Economics* 146, 102505. [Crossref]
- 15. Jinhee Woo. 2020. Do news shocks increase capital utilization?. *Economic Modelling* 91, 128-137. [Crossref]
- 16. Maximiliano Dvorkin, Juan M. Sánchez, Horacio Sapriza, Emircan Yurdagul. 2020. News, sovereign debt maturity, and default risk. *Journal of International Economics* **126**, 103352. [Crossref]
- 17. Daniele Siena. 2020. The euro area periphery and imbalances: Is it an Anticipation Story?. *Review of Economic Dynamics* 32. . [Crossref]
- DANILO CASCALDI-GARCIA, ANA BEATRIZ GALVAO. 2020. News and Uncertainty Shocks. Journal of Money, Credit and Banking. [Crossref]
- 19. Jianjun Miao, Pengfei Wang, Tao Zha. 2020. DISCOUNT SHOCK, PRICE–RENT DYNAMICS, AND THE BUSINESS CYCLE. *International Economic Review* **61**:3, 1229-1252. [Crossref]
- Ningru Zhao, Yukun Shi, Yang Sun, Jiaming Miao. 2020. Aggregate labor market fluctuations under news shocks. *Economic Modelling* 90, 397-405. [Crossref]

- Bae-Geun Kim. 2020. Sectoral shifts and comovements in employment. *Economics Letters* 192, 109208. [Crossref]
- 22. Michał Brzoza-Brzezina, Jacek Kotłowski. 2020. International confidence spillovers and business cycles in small open economies. *Empirical Economics* **81**. [Crossref]
- 23. Rodrigo Suescun. 2020. A tool for fiscal policy planning in a medium-term fiscal framework: The FMM-MTFF model. *Economic Modelling* **88**, 431-446. [Crossref]
- 24. Been-Lon Chen, Shun-Fa Lee, Xavier Raurich. 2020. Non-separable utilities and aggregate instability. *International Journal of Economic Theory* **16**:2, 222-237. [Crossref]
- 25. BRUNO CHIARINI, MARIA FERRARA, ELISABETTA MARZANO. 2020. Tax Evasion, Investment Shocks, and the Consumption Puzzle: A DSGE Analysis with Financial Frictions. *Journal* of Money, Credit and Banking 52:4, 907-932. [Crossref]
- 26. Fabio Milani, Ashish Rajbhandari. 2020. Observed expectations, news shocks, and the business cycle. *Research in Economics* 74:2, 95-118. [Crossref]
- 27. Cássio Besarria, Marcelo Silva, Diego Jesus. 2020. News shocks, government subsidies and housing prices in Brazil. *International Journal of Housing Markets and Analysis* 14:1, 157-177. [Crossref]
- Lilia Cavallari, Federico Etro. 2020. Demand, Markups and the Business Cycle. *European Economic Review* 103471. [Crossref]
- 29. Vo Phuong Mai Le, David Meenagh, Patrick Minford. 2020. News and why it is not shocking: The role of micro-foundations. *Journal of International Financial Markets, Institutions and Money* 66, 101199. [Crossref]
- 30. Ying Tung Chan. 2020. On the impacts of anticipated carbon policies: A dynamic stochastic general equilibrium model approach. *Journal of Cleaner Production* **256**, 120342. [Crossref]
- Ying Tung Chan. 2020. Collaborative optimal carbon tax rate under economic and energy price shocks: A dynamic stochastic general equilibrium model approach. *Journal of Cleaner Production* 256, 120452. [Crossref]
- 32. Brian Dombeck. 2020. ON THE EXPECTATIONAL STABILITY OF RATIONAL EXPECTATIONS EQUILIBRIA IN NEWS-SHOCK DSGE MODELS. *Macroeconomic Dynamics* 80, 1-25. [Crossref]
- TOM D. HOLDEN, PAUL LEVINE, JONATHAN M. SWARBRICK. 2020. Credit Crunches from Occasionally Binding Bank Borrowing Constraints. *Journal of Money, Credit and Banking* 52:2-3, 549-582. [Crossref]
- 34. Dennis W. Jansen, Diego E. Vacaflores. 2020. Remittances, Output, and Exchange Rate Regimes: Theory with an Application to Latin America. *Southern Economic Journal* 86:3, 1170-1191. [Crossref]
- 35. Kyriacos Lambrias. 2020. Real exchange rates and international co-movement: News-shocks and non-tradable goods with complete markets. *Review of Economic Dynamics* **35**, 154-169. [Crossref]
- Mikhail Golosov, Guido Menzio. 2020. Agency business cycles. *Theoretical Economics* 15:1, 123-158. [Crossref]
- 37. Dario Caldara, Matteo Iacoviello, Patrick Molligo, Andrea Prestipino, Andrea Raffo. 2020. The economic effects of trade policy uncertainty. *Journal of Monetary Economics* 109, 38-59. [Crossref]
- 38. Luca Guerrieri, Dale Henderson, Jinill Kim. 2020. Interpreting shocks to the relative price of investment with a two-sector model. *Journal of Applied Econometrics* 35:1, 82-98. [Crossref]
- 39. Matteo Cacciatore, Giuseppe Fiori, Nora Traum. 2020. Hours and employment over the business cycle: A structural analysis. *Review of Economic Dynamics* 35, 240-262. [Crossref]
- 40. Rashad Ahmed. 2020. Global Flight-to-Safety Shocks. SSRN Electronic Journal . [Crossref]

- 41. Zhiting Wu. 2020. Firm Heterogeneity in Production-Based Asset Pricing: The Role of Habit Sensitivity and Lumpy Investment. SSRN Electronic Journal . [Crossref]
- 42. Julian Kozlowski, Laura Veldkamp, Venky Venkateswaran. 2019. The Tail that Wags the Economy: Beliefs and Persistent Stagnation. *Journal of Political Economy*. [Crossref]
- 43. Jean Flemming, Jean-Paul L'Huillier, Facundo Piguillem. 2019. Macro-prudential taxation in good times. *Journal of International Economics* 121, 103251. [Crossref]
- Kenza Benhima. 2019. Booms and busts with dispersed information. *Journal of Monetary Economics* 107, 32-47. [Crossref]
- 45. Shapoor Zarei, Hussain Marzban, Ali H. Samadi, Ahmad Sadraei Javaheri. 2019. News shocks modeling on monetary policies using dynamic stochastic general equilibrium (DSGE) model. *International Journal of Intelligent Unmanned Systems* 7:4, 209-230. [Crossref]
- 46. Dimitri Kroujiline, Maxim Gusev, Dmitry Ushanov, Sergey V. Sharov, Boris Govorkov. 2019. An endogenous mechanism of business cycles. *Algorithmic Finance* **59**, 1-22. [Crossref]
- 47. Gill Segal. 2019. A tale of two volatilities: Sectoral uncertainty, growth, and asset prices. *Journal of Financial Economics* 134:1, 110-140. [Crossref]
- 48. Kuan-Jen Chen, Ching-Chong Lai, Ting-Wei Lai. 2019. BUSINESS CYCLE FLUCTUATIONS WITH THE DIVISION OF PERMANENT AND TEMPORARY EMPLOYMENT. *Economic Inquiry* 57:4, 2082-2109. [Crossref]
- 49. TROY DAVIG, ANDREW FOERSTER. 2019. Uncertainty and Fiscal Cliffs. Journal of Money, Credit and Banking 51:7, 1857-1887. [Crossref]
- 50. Wei Wang, Richard M H Suen. 2019. Diversity and Economic Performance in a Model with Progressive Taxation. *The Economic Journal* **129**:623, 2949-2977. [Crossref]
- 51. Yasuo Hirose, Takushi Kurozumi. 2019. IDENTIFYING NEWS SHOCKS WITH FORECAST DATA. *Macroeconomic Dynamics* 4, 1-30. [Crossref]
- 52. Carlos A. Yépez. 2019. Informality and international business cycles. *Journal of International Financial Markets, Institutions and Money* **62**, 252-263. [Crossref]
- 53. DEOKWOO NAM, JIAN WANG. 2019. Mood Swings and Business Cycles: Evidence from Sign Restrictions. *Journal of Money, Credit and Banking* 51:6, 1623-1649. [Crossref]
- 54. Stephane Dées, Srečko Zimic. 2019. Animal spirits, fundamental factors and business cycle fluctuations. *Journal of Macroeconomics* 61, 103123. [Crossref]
- 55. Nicolas Abad, Alain Venditti. 2019. A NOTE ON BALANCED-BUDGET INCOME TAXES AND AGGREGATE (IN)STABILITY IN MULTI-SECTOR ECONOMIES. *Macroeconomic Dynamics* 1-20. [Crossref]
- 56. Petra Gerlach-Kristen, Rossana Merola. 2019. Consumption and credit constraints: a model and evidence from Ireland. *Empirical Economics* 57:2, 475-503. [Crossref]
- 57. Joel Wagner. 2019. What does a relative price of investment wedge reveal about the role of investment-specific technology?. *The B.E. Journal of Macroeconomics* **19**:2. . [Crossref]
- 58. Hashmat Khan, Konstantinos Metaxoglou, Christopher R. Knittel, Maya Papineau. 2019. Carbon emissions and business cycles. *Journal of Macroeconomics* **60**, 1-19. [Crossref]
- 59. Gabriel Di Bella, Francesco Grigoli. 2019. Optimism, pessimism, and short-term fluctuations. *Journal* of Macroeconomics **60**, 79-96. [Crossref]
- 60. Anca-Ioana Sirbu. 2019. NEWS ABOUT TAXES AND EXPECTATIONS-DRIVEN BUSINESS CYCLES. *Macroeconomic Dynamics* 23:4, 1340-1370. [Crossref]
- 61. Per Krusell, Timo Boppart. 2019. Labor Supply in the Past, Present, and Future: A Balanced-Growth Perspective. *Journal of Political Economy*. [Crossref]

- 62. Mauro Bambi, Alain Venditti. 2019. Time-varying consumption tax, productive government spending, and aggregate instability. *International Journal of Economic Theory* 36. [Crossref]
- 63. Marija Vukotić. 2019. Sectoral Effects of News Shocks. Oxford Bulletin of Economics and Statistics 81:2, 215-249. [Crossref]
- 64. Rüdiger Bachmann. 2019. Erfolge und Probleme der modernen (Mainstream-)Makroökonomik. *List Forum für Wirtschafts- und Finanzpolitik* 44:4, 451-493. [Crossref]
- Claudio Battiati. 2019. R&D, growth, and macroprudential policy in an economy undergoing boombust cycles. *Journal of Macroeconomics* 59, 299-324. [Crossref]
- 66. Daniel Fehrle. 2019. Housing and the business cycle revisited. *Journal of Economic Dynamics and Control* **99**, 103-115. [Crossref]
- 67. Xin Jin. 2019. The role of market expectations in commodity price dynamics: Evidence from oil data. *Journal of International Money and Finance* **90**, 1-18. [Crossref]
- 68. Mathias Hoffmann, Michael U Krause, Thomas Laubach. 2019. The Expectations-driven US Current Account. *The Economic Journal* **129**:618, 897-924. [Crossref]
- 69. Sven Offick, Roland C. Winkler. 2019. ENDOGENOUS FIRM ENTRY IN AN ESTIMATED MODEL OF THE U.S. BUSINESS CYCLE. *Macroeconomic Dynamics* 23:1, 284-321. [Crossref]
- 70. Julian Kozlowski, Laura Veldkamp, Venky Venkateswaran. 2019. The Tail That Keeps the Riskless Rate Low. *NBER Macroeconomics Annual* **33**, 253-283. [Crossref]
- 71. Richard Harrison, Ryland Thomas. 2019. Monetary Financing with Interest-Bearing Money. SSRN Electronic Journal . [Crossref]
- 72. Silvia Miranda-Agrippino, Sinem Hacioglu Hoke, Kristina Bluwstein. 2019. When Creativity Strikes: News Shocks and Business Cycle Fluctuations. *SSRN Electronic Journal*. [Crossref]
- 73. Pablo A. Guerron-Quintana, Ryo Jinnai. 2019. Financial frictions, trends, and the great recession. *Quantitative Economics* 10:2, 735-773. [Crossref]
- 74. Fidel Perez Sebastian, Ohad Raveh, Frederick van der Ploeg. 2019. Oil Discoveries and Protectionism. SSRN Electronic Journal . [Crossref]
- 75. Saki Bigio, Eduardo Zilberman. 2019. Speculation-Driven Business Cycles. SSRN Electronic Journal . [Crossref]
- 76. Antonio Falato, Jasmine Xiao. 2019. The Expectations Driven Financial Accelerator. SSRN Electronic Journal. [Crossref]
- 77. Daniel L Tortorice. 2018. The business cycle implications of fluctuating long run expectations. Journal of Macroeconomics 58, 266-291. [Crossref]
- 78. KEVIN X.D. HUANG, QINGLAI MENG, JIANPO XUE. 2018. Balanced-Budget Rules and Aggregate Instability: The Role of Endogenous Capital Utilization. *Journal of Money, Credit and Banking* **50**:8, 1669-1709. [Crossref]
- 79. Chih-Pin Lin, Chi-Jui Huang, Cheng-Min Chuang. 2018. Corruption and business cycle volatility: a corporate governance perspective. *Asia-Pacific Journal of Accounting & Economics* 25:5, 586-606. [Crossref]
- Keyu Jin, Nan Li. 2018. International Transmission with Heterogeneous Sectors. American Economic Journal: Macroeconomics 10:4, 36-76. [Abstract] [View PDF article] [PDF with links]
- 81. Hashmat Khan, Jean-François Rouillard. 2018. Household borrowing constraints and residential investment dynamics. *Journal of Economic Dynamics and Control* **95**, 1-18. [Crossref]
- 82. Kuan-Jen Chen, Angus C. Chu, Ching-Chong Lai. 2018. Home production and small open economy business cycles. *Journal of Economic Dynamics and Control* **95**, 110-135. [Crossref]

- 83. Kiyoung Jeon, Zeynep Kabukcuoglu. 2018. Income inequality and sovereign default. *Journal of Economic Dynamics and Control* **95**, 211-232. [Crossref]
- 84. Xiaohan Ma. 2018. Investment specific technology, news, sentiment, and fluctuations: Evidence from nowcast data. *Journal of Macroeconomics* 57, 55-70. [Crossref]
- 85. Carlos A. Yépez. 2018. Cyclical wage movements in emerging markets compared to developed economies: a general equilibrium comment. The Journal of International Trade & Economic Development 27:6, 655-666. [Crossref]
- 86. Syed Zahid Ali, Sajid Anwar. 2018. Price puzzle in a small open New Keynesian model. *The Quarterly Review of Economics and Finance* 69, 29-42. [Crossref]
- 87. Deokwoo Nam, Jian Wang. 2018. Understanding the Effect of Productivity Changes on International Relative Prices: The Role of News Shocks. *Pacific Economic Review* 23:3, 490-516. [Crossref]
- 88. Stelios Bekiros, Rachatar Nilavongse, Gazi Salah Uddin. 2018. Bank capital shocks and countercyclical requirements: Implications for banking stability and welfare. *Journal of Economic Dynamics and Control* **93**, 315-331. [Crossref]
- Viktoria C. E. Langer, Wolfgang Maennig, Felix Richter. 2018. The Olympic Games as a News Shock. Journal of Sports Economics 19:6, 884-906. [Crossref]
- Ryan Chahrour, Kyle Jurado. 2018. News or Noise? The Missing Link. American Economic Review 108:7, 1702-1736. [Abstract] [View PDF article] [PDF with links]
- 91. Marc-André Letendre, Joel Wagner. 2018. AGENCY COSTS, RISK SHOCKS, AND INTERNATIONAL CYCLES. Macroeconomic Dynamics 22:5, 1134-1172. [Crossref]
- 92. Darong Dai. 2018. Fiscal policy under a minimum-time objective. *Scottish Journal of Political Economy* 65:3, 293-314. [Crossref]
- Bartosz Maćkowiak, Filip Matějka, Mirko Wiederholt. 2018. Dynamic rational inattention: Analytical results. *Journal of Economic Theory* 176, 650-692. [Crossref]
- 94. Dan Cao, Jean-Paul L'Huillier. 2018. Technological revolutions and the Three Great Slumps: A medium-run analysis. *Journal of Monetary Economics* **96**, 93-108. [Crossref]
- George-Marios Angeletos. 2018. Frictional Coordination. *Journal of the European Economic Association* 16:3, 563-603. [Crossref]
- 96. Amanda Michaud, Jacek Rothert. 2018. Redistributive fiscal policies and business cycles in emerging economies. *Journal of International Economics* **112**, 123-133. [Crossref]
- Matthew Rognlie, Andrei Shleifer, Alp Simsek. 2018. Investment Hangover and the Great Recession. *American Economic Journal: Macroeconomics* 10:2, 113-153. [Abstract] [View PDF article] [PDF with links]
- 98. Zhang Chen, Zulfiqar Ali Wagan, Hakimzadi Seelro. 2018. New evidence on the robust identification of news shocks: Role of revisions in utilization-adjusted TFP series and term structure data. *Journal* of *Forecasting* 37:3, 352-370. [Crossref]
- 99. Ivan Jaccard. 2018. Asset Pricing and the Propagation of Macroeconomic Shocks. *Journal of the European Economic Association* 16:2, 436-486. [Crossref]
- 100. Richard W. Evans, Kerk L. Phillips. 2018. Advantages of an Ellipse when Modeling Leisure Utility. *Computational Economics* **51**:3, 513-533. [Crossref]
- 101. Syed Zahid Ali, Sajid Anwar. 2018. Anticipated versus unanticipated terms of trade shocks and the J -curve phenomenon. *Journal of International Money and Finance* **81**, 1-19. [Crossref]
- 102. CHRISTOPHER M. GUNN. 2018. Overaccumulation, Interest, and Prices. Journal of Money, Credit and Banking 50:2-3, 479-511. [Crossref]

- 103. Nadav Ben Zeev. 2018. What can we learn about news shocks from the late 1990s and early 2000s boom-bust period?. *Journal of Economic Dynamics and Control* 87, 94-105. [Crossref]
- 104. MUNECHIKA KATAYAMA, KWANG HWAN KIM. 2018. Intersectoral Labor Immobility, Sectoral Comovement, and News Shocks. *Journal of Money, Credit and Banking* 50:1, 77-114. [Crossref]
- 105. Paul Beaudry, Dana Galizia, Franck Portier. 2018. Reconciling Hayek's and Keynes' Views of Recessions. *The Review of Economic Studies* 85:1, 119-156. [Crossref]
- 106. Marcelo Silva, Rafael Vasconcelos, Paulo Vaz. 2018. Producers' Expectation Shocks and Business Cycles. SSRN Electronic Journal. [Crossref]
- 107. Hamilton Galindo Gil, Alexis Montecinos Bravo. 2018. Leverage and Capital Utilization. SSRN Electronic Journal. [Crossref]
- 108. Gabriel Di Bella, Francesco Grigoli. 2018. Optimism, Pessimism, and Short-Term Fluctuations. IMF Working Papers 18:1, 1. [Crossref]
- 109. Sangyup Choi, Myungkyu Shim. 2018. Labor Market Dynamics Under Technology Shocks: Role of Subsistence Consumption. SSRN Electronic Journal . [Crossref]
- 110. Lorenzo Garlappi, Zhongzhi Song. 2017. Capital utilization, market power, and the pricing of investment shocks. *Journal of Financial Economics* 126:3, 447-470. [Crossref]
- 111. Pablo D. Fajgelbaum, Edouard Schaal, Mathieu Taschereau-Dumouchel. 2017. Uncertainty Traps*. *The Quarterly Journal of Economics* 132:4, 1641-1692. [Crossref]
- 112. Mario Forni, Luca Gambetti, Marco Lippi, Luca Sala. 2017. Noisy News in Business Cycles. *American Economic Journal: Macroeconomics* **9**:4, 122-152. [Abstract] [View PDF article] [PDF with links]
- 113. Stéphane Dees. 2017. The role of confidence shocks in business cycles and their global dimension. *International Economics* 151, 48-65. [Crossref]
- 114. Georgiy Revyakin. 2017. A NEW APPROACH TO THE NATURE OF ECONOMIC CYCLES AND THEIR ANALYSIS IN THE GLOBAL CONTEXT. *EUREKA: Social and Humanities* 5, 27-37. [Crossref]
- 115. Nadav Ben Zeev, Evi Pappa. 2017. Chronicle of A War Foretold: The Macroeconomic Effects of Anticipated Defence Spending Shocks. *The Economic Journal* **127**:603, 1568-1597. [Crossref]
- 116. Christoph Görtz, John D. Tsoukalas. 2017. News and Financial Intermediation in Aggregate Fluctuations. *The Review of Economics and Statistics* **99**:3, 514-530. [Crossref]
- 117. Jaya Dey, Yi-Chan Tsai. 2017. Explaining the durable goods co-movement puzzle: A Bayesian approach. *Journal of Macroeconomics* **52**, 75-99. [Crossref]
- 118. Wataru Miyamoto, Thuy Lan Nguyen. 2017. Understanding the cross-country effects of U.S. technology shocks. *Journal of International Economics* **106**, 143-164. [Crossref]
- 119. Alexandre Dmitriev. 2017. Composite habits and international transmission of business cycles. *Journal of Economic Dynamics and Control* **76**, 1-34. [Crossref]
- 120. Güneş Kamber, Konstantinos Theodoridis, Christoph Thoenissen. 2017. News-driven business cycles in small open economies. *Journal of International Economics* **105**, 77-89. [Crossref]
- 121. Kerk L. Phillips. 2017. Solving and simulating unbalanced growth models using linearization about the current state. *Economics Letters* 151, 35-38. [Crossref]
- 122. Luciana Juvenal, Paulo Santos Monteiro. 2017. Trade and synchronization in a multi-country economy. *European Economic Review* 92, 385-415. [Crossref]
- 123. Rabah Arezki, Valerie A. Ramey, Liugang Sheng. 2017. News Shocks in Open Economies: Evidence from Giant Oil Discoveries*. *The Quarterly Journal of Economics* 132:1, 103-155. [Crossref]

- 124. Sumru Altug, Serdar Kabaca. 2017. Search Frictions, Financial Frictions, and Labor Market Fluctuations in Emerging Markets. *Emerging Markets Finance and Trade* 53:1, 128-149. [Crossref]
- 125. Frédéric Dufourt, Kazuo Nishimura, Carine Nourry, Alain Venditti. Sunspot Fluctuations in Two-Sector Models with Variable Income Effects 71-96. [Crossref]
- 126. Luisa Lambertini, Caterina Mendicino, Maria Teresa Punzi. 2017. Expectations-driven cycles in the housing market. *Economic Modelling* **60**, 297-312. [Crossref]
- 127. Sandra Gomes, Nikolay Iskrev, Caterina Mendicino. 2017. Monetary policy shocks: We got news!. Journal of Economic Dynamics and Control 74, 108-128. [Crossref]
- 128. Nicolas Abad, Thomas Seegmuller, Alain Venditti. 2017. NONSEPARABLE PREFERENCES DO NOT RULE OUT AGGREGATE INSTABILITY UNDER BALANCED-BUDGET RULES: A NOTE. *Macroeconomic Dynamics* 21:1, 259-277. [Crossref]
- 129. Jeffrey R. Campbell, Jonas D. M. Fisher, Alejandro Justiniano, Leonardo Melosi. 2017. Forward Guidance and Macroeconomic Outcomes since the Financial Crisis. *NBER Macroeconomics Annual* 31:1, 283-357. [Crossref]
- 130. Dan Cao, Jean-Paul L'Huillier. 2017. Technological Revolutions and the Three Great Slumps: A Medium-Run Analysis. SSRN Electronic Journal. [Crossref]
- 131. Can Tian. 2017. Sequential Movement Pattern of Firm Births and Deaths Over the Business Cycles. SSRN Electronic Journal . [Crossref]
- 132. Can Tian. 2017. Forecast Shocks in Production Networks. SSRN Electronic Journal . [Crossref]
- 133. Amanda M. Michaud, Jacek Rothert. 2017. Redistributive Fiscal Policies and Business Cycles in Emerging Economies. SSRN Electronic Journal. [Crossref]
- 134. Alexandr Kopytov, Haotian Xiang. 2017. Make America Great: Long-Run Impacts of Short-Run Public Investment. SSRN Electronic Journal . [Crossref]
- 135. Nathan S. Balke, Enrique Marttnez-Garcca, Zheng Zeng. 2017. Understanding the Aggregate Effects of Credit Frictions and Uncertainty. *SSRN Electronic Journal*. [Crossref]
- 136. Xin Jin. 2017. The Role of Market Expectations in Commodity Price Dynamics: Evidence from Oil Data. *SSRN Electronic Journal*. [Crossref]
- 137. Pavel S. Kapinos. 2017. Monetary Policy News and Systemic Risk at the Zero Lower Bound. SSRN Electronic Journal. [Crossref]
- 138. Mohammed Elshendy, Andrea Fronzetti Colladon. 2017. Big data analysis of economic news. International Journal of Engineering Business Management 9, 184797901772004. [Crossref]
- 139. Gunes Kamber, Chris McDonald, Nick Sander, Konstantinos Theodoridis. 2016. Modelling the business cycle of a small open economy: The Reserve Bank of New Zealand's DSGE model. *Economic Modelling* **59**, 546-569. [Crossref]
- 140. Eric Sims. 2016. What#s news in News? A cautionary note on using a variance decomposition to assess the quantitative importance of news shocks. *Journal of Economic Dynamics and Control* 73, 41-60. [Crossref]
- 141. Haichao Fan, Xiang Gao, Juanyi Xu, Zhiwei Xu. 2016. News shock, firm dynamics and business cycles: Evidence and theory. *Journal of Economic Dynamics and Control* **73**, 159-180. [Crossref]
- 142. Yota D. Deli. 2016. Endogenous capital depreciation and technology shocks. *Journal of International Money and Finance* 69, 318-338. [Crossref]
- 143. Domenico Giannone, Francesca Monti, Lucrezia Reichlin. 2016. Exploiting the monthly data flow in structural forecasting. *Journal of Monetary Economics* 84, 201-215. [Crossref]
- 144. Yaniv Yedid-Levi. 2016. Why does employment in all major sectors move together over the business cycle?. *Review of Economic Dynamics* 22, 131-156. [Crossref]

- 145. Josef Hollmayr, Michael Kühl. 2016. Imperfect information about financial frictions and consequences for the business cycle. *Review of Economic Dynamics* 22, 179-207. [Crossref]
- 146. Li Gu, Dayong Huang. 2016. The Effect of the Growth in Labor Hours per Worker on Future Stock Returns, Hiring, and Profitability. *Review of Finance* 68, rfw049. [Crossref]
- 147. Huixin Bi, Wenyi Shen, Shu-Chun S. Yang. 2016. Debt-dependent effects of fiscal expansions. *European Economic Review* 88, 142-157. [Crossref]
- 148. Viktoria C.E. Langer. 2016. News shocks, nonseparable preferences, and optimal monetary policy. *Journal of Macroeconomics* **49**, 237-246. [Crossref]
- 149. Levon Barseghyan, Marco Battaglini. 2016. Political economy of debt and growth. *Journal of Monetary Economics* 82, 36-51. [Crossref]
- 150. Konstantinos Theodoridis, Francesco Zanetti. 2016. News shocks and labour market dynamics in matching models. *Canadian Journal of Economics/Revue canadienne d'économique* 49:3, 906-930. [Crossref]
- 151. Nancy L. Stokey. 2016. Wait-and-see: Investment options under policy uncertainty. *Review of Economic Dynamics* 21, 246-265. [Crossref]
- 152. Kenichi Tamegawa, Shin Fukuda. 2016. EXPECTATION ERRORS IN CREDIT MARKET AND BUSINESS CYCLES. *Macroeconomic Dynamics* **20**:5, 1359-1380. [Crossref]
- 153. Lina Marcela Osorio-Copete. 2016. Reforma tributaria e informalidad laboral en Colombia: Un análisis de equilibrio general dinámico y estocástico. *Ensayos sobre Política Económica* 34:80, 126-145. [Crossref]
- 154. Levon Barseghyan, Riccardo DiCecio. 2016. Externalities, endogenous productivity, and poverty traps. *European Economic Review* **85**, 112-126. [Crossref]
- 155. Eric C.Y. Ng, Ning Feng. 2016. Housing market dynamics in a small open economy: Do external and news shocks matter?. *Journal of International Money and Finance* **63**, 64-88. [Crossref]
- 156. Nicolas Crouzet, Hyunseung Oh. 2016. What do inventories tell us about news-driven business cycles?. *Journal of Monetary Economics* **79**, 49-66. [Crossref]
- 157. Stefano Gnocchi, Daniela Hauser, Evi Pappa. 2016. Housework and fiscal expansions. *Journal of Monetary Economics* **79**, 94-108. [Crossref]
- 158. Stefan Avdjiev. 2016. News Driven Business Cycles and data on asset prices in estimated DSGE models. *Review of Economic Dynamics* **20**, 181-197. [Crossref]
- 159. Javier Bianchi, Chenxin Liu, Enrique G. Mendoza. 2016. Fundamentals news, global liquidity and macroprudential policy. *Journal of International Economics* **99**, S2-S15. [Crossref]
- 160. Gaetano Gaballo. 2016. Rational Inattention to News: The Perils of Forward Guidance. *American Economic Journal: Macroeconomics* 8:1, 42-97. [Abstract] [View PDF article] [PDF with links]
- 161. Vasco Gabriel, Paul Levine, Bo Yang. An Estimated DSGE Open Economy Model of the Indian Economy with Financial Frictions 455-506. [Crossref]
- 162. G.-M. Angeletos, C. Lian. Incomplete Information in Macroeconomics 1065-1240. [Crossref]
- 163. Marcin Bielecki, Karolina Goraus, Jan Hagemejer, Joanna Tyrowicz. 2016. Decreasing fertility vs increasing longevity: Raising the retirement age in the context of ageing processes. *Economic Modelling* 52, 125-143. [Crossref]
- 164. Oscar Pavlov. 2016. Can firm entry explain news-driven fluctuations?. *Economic Modelling* 52, 427-434. [Crossref]
- 165. Daniel L. Tortorice. 2016. The Business Cycles Implications of Fluctuating Long Run Expectations. SSRN Electronic Journal. [Crossref]

- 166. Koyin Chang, Yoonbai Kim, Marc Tomljanovich, Frank Ying. 2016. Do Political Parties Foster Business Cycles? An Examination of Developed Economies. SSRN Electronic Journal . [Crossref]
- 167. Huixin Bi, Wenyi Shen, ShuuChun S. Yang. 2016. Debt-Dependent Effects of Fiscal Expansions. SSRN Electronic Journal . [Crossref]
- 168. George-Marios Angeletos, Chen Lian. 2016. Incomplete Information in Macroeconomics: Accommodating Frictions in Coordination. SSRN Electronic Journal . [Crossref]
- 169. Niklas Gadatsch. 2016. Real Effects of Sovereign Bond Market Spillovers in the Euro Area. SSRN Electronic Journal. [Crossref]
- 170. Gabor Pinter. 2016. The Macroeconomic Shock with the Highest Price of Risk. SSRN Electronic Journal . [Crossref]
- 171. Lorenz Kueng. 2016. Tax News: The Response of Household Spending to Changes in Expected Taxes. SSRN Electronic Journal. [Crossref]
- 172. Kaiji Chen, Edouard Wemy. 2015. Investment-specific technological changes: The source of longrun TFP fluctuations. *European Economic Review* **80**, 230-252. [Crossref]
- 173. Jianjun Miao, Pengfei Wang, Zhiwei Xu. 2015. A Bayesian dynamic stochastic general equilibrium model of stock market bubbles and business cycles. *Quantitative Economics* 6:3, 599-635. [Crossref]
- 174. Markus Brückner, Evi Pappa. 2015. News Shocks in the Data: Olympic Games and Their Macroeconomic Effects. *Journal of Money, Credit and Banking* 47:7, 1339-1367. [Crossref]
- 175. Nadav Ben Zeev, Hashmat Khan. 2015. Investment-Specific News Shocks and U.S. Business Cycles. Journal of Money, Credit and Banking 47:7, 1443-1464. [Crossref]
- 176. Deokwoo Nam, Jian Wang. 2015. The effects of surprise and anticipated technology changes on international relative prices and trade. *Journal of International Economics* **97**:1, 162-177. [Crossref]
- 177. Marcin Bielecki, Karolina Goraus, Jan Hagemejer, Krzysztof Makarski, Joanna Tyrowicz. 2015. Small assumptions (can) have a large bearing: evaluating pension system reforms with OLG models. *Economic Modelling* **48**, 210-221. [Crossref]
- 178. Christopher M. Gunn. 2015. Animal spirits as an engine of boom-busts and throttle of productivity growth. *Journal of Economic Dynamics and Control* 57, 24-53. [Crossref]
- 179. Ryo Jinnai. 2015. Innovation, product cycle, and asset prices. *Review of Economic Dynamics* 18:3, 484-504. [Crossref]
- 180. Tim Oliver Berg. 2015. Technology News and the US Economy: Time Variation and Structural Changes. *Scottish Journal of Political Economy* 62:3, 227-263. [Crossref]
- 181. Jang-Ting Guo, Anca-Ioana Sirbu, Mark Weder. 2015. News about aggregate demand and the business cycle. *Journal of Monetary Economics* 72, 83-96. [Crossref]
- 182. Paulina Etxeberria-Garaigorta, Amaia Iza. 2015. The Role of Productivity and Financial Frictions in the Business Cycles of a Small Open Economy: Hong Kong 1984-2011. *Review of Development Economics* 19:2, 400-414. [Crossref]
- 183. Edward Herbst. 2015. Using the "Chandrasekhar Recursions" for Likelihood Evaluation of DSGE Models. Computational Economics 45:4, 693-705. [Crossref]
- 184. Stefano Eusepi, Bruce Preston. 2015. Consumption heterogeneity, employment dynamics and macroeconomic co-movement. *Journal of Monetary Economics* 71, 13-32. [Crossref]
- 185. KUAN-JEN CHEN, CHING-CHONG LAI. 2015. On-the-Job Learning and News-Driven Business Cycles. Journal of Money, Credit and Banking 47:2-3, 261–294. [Crossref]
- 186. Wenyi Shen. 2015. News, disaster risk, and time-varying uncertainty. *Journal of Economic Dynamics* and Control 51, 459-479. [Crossref]

- 187. Martin Gervais, Nir Jaimovich, Henry E. Siu, Yaniv Yedid-Levi. 2015. TECHNOLOGICAL LEARNING AND LABOR MARKET DYNAMICS. *International Economic Review* 56:1, 27-53. [Crossref]
- 188. Cosmin L. Ilut. 2015. Comment on "Risk and Ambiguity in Models of Business Cycles" by David Backus, Axelle Ferriere and Stanley Zin. *Journal of Monetary Economics* 69, 64-69. [Crossref]
- 189. Tarek A. Hassan, Thomas M. Mertens. 2015. Information Aggregation in a Dynamic Stochastic General Equilibrium Model. NBER Macroeconomics Annual 29:1, 159-207. [Crossref]
- 190. Robert B. Barsky, Susanto Basu, Keyoung Lee. 2015. Whither News Shocks?. NBER Macroeconomics Annual 29:1, 225-264. [Crossref]
- 191. Juin-Jen Chang, Jang-Ting Guo, Jhy-Yuan Shieh, Wei-Neng Wang. 2015. SECTORAL COMPOSITION OF GOVERNMENT SPENDING AND MACROECONOMIC (IN)STABILITY. *Economic Inquiry* 53:1, 23-33. [Crossref]
- 192. Francesca Monti. 2015. Can a Data-Rich Environment Help Identify the Sources of Model Misspecification?. SSRN Electronic Journal. [Crossref]
- 193. Susanto Basu, Brent Bundick. 2015. Endogenous Volatility at the Zero Lower Bound: Implications for Stabilization Policy. *SSRN Electronic Journal*. [Crossref]
- 194. Julian Kozlowski, Laura Veldkamp, Venky Venkateswaran. 2015. The Tail that Wags the Economy: Belief-Driven Business Cycles and Persistent Stagnation. SSRN Electronic Journal . [Crossref]
- 195. Mikhail Golosov, Guido Menzio. 2015. Agency Business Cycles. SSRN Electronic Journal . [Crossref]
- 196. Javier Bianchi, Chenxin Liu. 2015. Fundamentals News, Global Liquidity and Macroprudential Policy. SSRN Electronic Journal . [Crossref]
- 197. Rabah Arezki, Valerie Ramey, Liugang Sheng. 2015. News Shocks in Open Economies: Evidence from Giant Oil Discoveries. *IMF Working Papers* 15:209, 1. [Crossref]
- 198. Paul Beaudry, Franck Portier. 2014. News-Driven Business Cycles: Insights and Challenges. *Journal of Economic Literature* 52:4, 993-1074. [Abstract] [View PDF article] [PDF with links]
- 199. Eliezer Borenstein, David Elkayam. 2014. The equity premium in a small open economy and an application to Israel. *Economic Modelling* **43**, 81-99. [Crossref]
- 200. Mario Forni, Luca Gambetti, Luca Sala. 2014. No News in Business Cycles. The Economic Journal 124:581, 1168-1191. [Crossref]
- 201. Benjamin Born, Johannes Pfeifer. 2014. Policy risk and the business cycle. *Journal of Monetary Economics* 68, 68-85. [Crossref]
- 202. Edward Herbst, Frank Schorfheide. 2014. SEQUENTIAL MONTE CARLO SAMPLING FOR DSGE MODELS. *Journal of Applied Econometrics* 29:7, 1073-1098. [Crossref]
- 203. Masanori Kashiwagi. 2014. Sunspots and self-fulfilling beliefs in the U.S. housing market. *Review of Economic Dynamics* 17:4, 654-676. [Crossref]
- 204. RYO JINNAI. 2014. R&D Shocks and News Shocks. Journal of Money, Credit and Banking 46:7, 1457-1478. [Crossref]
- 205. Bill Dupor, M. Saif Mehkari. 2014. The analytics of technology news shocks. *Journal of Economic Theory* 153, 392-427. [Crossref]
- 206. John C. Driscoll, Steinar Holden. 2014. Behavioral economics and macroeconomic models. *Journal* of Macroeconomics 41, 133-147. [Crossref]
- 207. Mariano Massimiliano Croce. 2014. Long-run productivity risk: A new hope for production-based asset pricing?. *Journal of Monetary Economics* 66, 13-31. [Crossref]

- 208. Francesco Furlanetto, Martin Seneca. 2014. NEW PERSPECTIVES ON DEPRECIATION SHOCKS AS A SOURCE OF BUSINESS CYCLE FLUCTUATIONS. *Macroeconomic Dynamics* 18:6, 1209-1233. [Crossref]
- 209. Kristoffer P. Nimark. 2014. Man-Bites-Dog Business Cycles. American Economic Review 104:8, 2320-2367. [Abstract] [View PDF article] [PDF with links]
- 210. Cosmin L. Ilut, Martin Schneider. 2014. Ambiguous Business Cycles. *American Economic Review* 104:8, 2368-2399. [Abstract] [View PDF article] [PDF with links]
- Karl Walentin. 2014. Expectation driven business cycles with limited enforcement. *Economics Letters* 124:2, 300-303. [Crossref]
- 212. Luca Guerrieri, Dale Henderson, Jinill Kim. 2014. MODELING INVESTMENT-SECTOR EFFICIENCY SHOCKS: WHEN DOES DISAGGREGATION MATTER?. International Economic Review 55:3, 891-917. [Crossref]
- IVAN JACCARD. 2014. Asset Returns and Labor Supply in a Production Economy. *Journal of Money,* Credit and Banking 46:5, 889-919. [Crossref]
- 214. Haichao Fan, Zhiwei Xu. 2014. Firm dynamics in news-driven business cycles: the role of endogenous survival rate. *Applied Economics* **46**:15, 1767-1777. [Crossref]
- 215. Andrew Williams. 2014. The effect of transparency on output volatility. *Economics of Governance* 15:2, 101-129. [Crossref]
- 216. Kenichi Tamegawa. 2014. A closed-form analysis of anticipated monetary policy. *EconomiA* 15:2, 155-161. [Crossref]
- 217. André Kurmann, Elmar Mertens. 2014. Stock Prices, News, and Economic Fluctuations: Comment. *American Economic Review* 104:4, 1439-1445. [Abstract] [View PDF article] [PDF with links]
- 218. Alejandro Justiniano, Giorgio E. Primiceri, Andrea Tambalotti. 2014. The effects of the saving and banking glut on the U.S. economy. *Journal of International Economics* **92**, S52-S67. [Crossref]
- 219. Emi Nakamura, Jón Steinsson. 2014. Fiscal Stimulus in a Monetary Union: Evidence from US Regions. *American Economic Review* 104:3, 753-792. [Abstract] [View PDF article] [PDF with links]
- 220. Patrick Hürtgen. 2014. Consumer misperceptions, uncertain fundamentals, and the business cycle. *Journal of Economic Dynamics and Control* 40, 279-292. [Crossref]
- 221. Eran A. Guse. 2014. Adaptive learning, endogenous uncertainty, and asymmetric dynamics. *Journal of Economic Dynamics and Control* 40, 355-373. [Crossref]
- 222. Markus K. Brunnermeier, Yuliy Sannikov. 2014. A Macroeconomic Model with a Financial Sector. *American Economic Review* 104:2, 379-421. [Abstract] [View PDF article] [PDF with links]
- 223. Yu Ren, Yufei Yuan. 2014. Why the Housing Sector Leads the Whole Economy: The Importance of Collateral Constraints and News Shocks. *The Journal of Real Estate Finance and Economics* 48:2, 323-341. [Crossref]
- 224. Francesco Furlanetto, Martin Seneca. 2014. Investment shocks and consumption. *European Economic Review* 66, 111-126. [Crossref]
- 225. Robert Lester, Michael Pries, Eric Sims. 2014. Volatility and welfare. *Journal of Economic Dynamics and Control* **38**, 17-36. [Crossref]
- 226. Jaya Dey. 2014. Evaluating monetary policy under preferences with zero wealth effect: A Bayesian approach. *Journal of Economic Dynamics and Control* **38**, 209-234. [Crossref]
- 227. Rui Albuquerque, Jianjun Miao. 2014. Advance information and asset prices. *Journal of Economic Theory* 149, 236-275. [Crossref]
- 228. Paul Beaudry, Franck Portier. 2014. Understanding Noninflationary Demand-Driven Business Cycles. NBER Macroeconomics Annual 28:1, 69-130. [Crossref]

- 229. Gunes Kamber, Konstantinos Theodoridis, Christoph Thoenissen. 2014. News-Driven Business Cycles in Small Open Economies. *SSRN Electronic Journal*. [Crossref]
- 230. Kaiji Chen, Edouard Wemyz. 2014. Investment-Specific Technology Shocks: The Source of Anticipated TFP Fluctuations. SSRN Electronic Journal. [Crossref]
- 231. Thomas Lubik, Pierre-Daniel G. Sarte, Felipe F. Schwartzman. 2014. What Inventory Behavior Tells Us About How Business Cycles Have Changed. *SSRN Electronic Journal*. [Crossref]
- 232. Tarek A. Hassan, Thomas M. Mertens. 2014. Information Aggregation in a DSGE Model. SSRN Electronic Journal . [Crossref]
- 233. Konstantinos Theodoridis, Francesco Zanetti. 2014. News and Labour Market Dynamics in the Data and in Matching Models. *SSRN Electronic Journal*. [Crossref]
- 234. Troy Davig, Andrew T. Foerster. 2014. Uncertainty and Fiscal Cliffs. SSRN Electronic Journal . [Crossref]
- 235. Ambrogio Cesa-Bianchi, Emilio Fernandez-Corugedo. 2014. Uncertainty in a Model with Credit Frictions. SSRN Electronic Journal . [Crossref]
- 236. Samuel Wills. 2014. Optimal Monetary Responses to Oil Discoveries. SSRN Electronic Journal . [Crossref]
- 237. Ryo Jinnai. 2014. R&D Shocks, News Shocks, and Price Levels. SSRN Electronic Journal . [Crossref]
- 238. Pascal Terveer. 2014. An Alternative and User Friendly Algorithm for the Calibration of Complex DSGE Models. *SSRN Electronic Journal*. [Crossref]
- 239. Helmut Luetkepohl, Aleksei Netsunajev. 2014. Structural Vector Autoregressions with Smooth Transition in Variances: The Interaction between U.S. Monetary Policy and the Stock Market. SSRN Electronic Journal. [Crossref]
- 240. Stefan Notz, Peter Rosenkranz. 2014. Business Cycles in Emerging Markets: The Role of Liability Dollarization and Valuation Effects. SSRN Electronic Journal. [Crossref]
- 241. John C. Driscoll, Steinar Holden. 2014. Behavioral Economics and Macroeconomic Models. SSRN Electronic Journal . [Crossref]
- 242. Daniele Siena. 2014. The European Monetary Union and Imbalances: Is it an Anticipation Story ?. SSRN Electronic Journal . [Crossref]
- 243. Justus Baron, Julia Schmidt. 2014. Technological Standardization, Endogenous Productivity and Transitory Dynamics. SSRN Electronic Journal. [Crossref]
- 244. Wataru Miyamoto, Thuy Lan Nguyen. 2014. News Shocks and Business Cycles: Evidence from Forecast Data. SSRN Electronic Journal . [Crossref]
- 245. Wataru Miyamoto, Thuy Lan Nguyen. 2014. Understanding the Cross Country Effects of US Technology Shocks. *SSRN Electronic Journal*. [Crossref]
- 246. Mario Forni, Luca Gambetti, Marco Lippi, Luca Sala. 2014. Noisy News in Business Cycles. SSRN Electronic Journal . [Crossref]
- 247. George-Marios Angeletos, Fabrice Collard, Harris Dellas. 2014. Quantifying Confidence. SSRN Electronic Journal . [Crossref]
- 248. Jianjun Miao, Pengfei Wang, Tao Zha. 2014. Liquidity Premia, Price-Rent Dynamics, and Business Cycles. SSRN Electronic Journal . [Crossref]
- 249. Jaromir Benes, Michael Kumhof, Douglas Laxton. 2014. Financial Crises in DSGE Models: Selected Applications of MAPMOD. *IMF Working Papers* 14:56, 1. [Crossref]
- 250. Olivier J. Blanchard, Jean-Paul L'Huillier, Guido Lorenzoni. 2013. News, Noise, and Fluctuations: An Empirical Exploration. *American Economic Review* 103:7, 3045-3070. [Abstract] [View PDF article] [PDF with links]

- 251. Benjamin Born, Alexandra Peter, Johannes Pfeifer. 2013. Fiscal news and macroeconomic volatility. *Journal of Economic Dynamics and Control* **37**:12, 2582-2601. [Crossref]
- 252. Levon Barseghyan, Marco Battaglini, Stephen Coate. 2013. Fiscal policy over the real business cycle: A positive theory. *Journal of Economic Theory* 148:6, 2223-2265. [Crossref]
- 253. ROBERTO CHANG, ANDRÉS FERNÁNDEZ. 2013. ON THE SOURCES OF AGGREGATE FLUCTUATIONS IN EMERGING ECONOMIES. International Economic Review 54:4, 1265-1293. [Crossref]
- 254. André Kurmann,, Christopher Otrok. 2013. News Shocks and the Slope of the Term Structure of Interest Rates. *American Economic Review* 103:6, 2612-2632. [Abstract] [View PDF article] [PDF with links]
- 255. Kaushik Mitra, George W. Evans, Seppo Honkapohja. 2013. Policy change and learning in the RBC model. *Journal of Economic Dynamics and Control* **37**:10, 1947-1971. [Crossref]
- 256. Christoph Görtz, John D. Tsoukalas. 2013. Learning, capital-embodied technology and aggregate fluctuations. *Review of Economic Dynamics* 16:4, 708-723. [Crossref]
- 257. Sylvain Leduc, Keith Sill. 2013. Expectations and Economic Fluctuations: An Analysis Using Survey Data. *Review of Economics and Statistics* **95**:4, 1352-1367. [Crossref]
- 258. MARCEL FRATZSCHER, ROLAND STRAUB. 2013. Asset Prices, News Shocks, and the Trade Balance. *Journal of Money, Credit and Banking* 45:7, 1211-1251. [Crossref]
- 259. Carine Nourry, Thomas Seegmuller, Alain Venditti. 2013. Aggregate instability under balancedbudget consumption taxes: A re-examination. *Journal of Economic Theory* 148:5, 1977-2006. [Crossref]
- 260. C. Bora Durdu, Ricardo Nunes, Horacio Sapriza. 2013. News and sovereign default risk in small open economies. *Journal of International Economics* **91**:1, 1-17. [Crossref]
- 261. Francesco Furlanetto, Gisle J. Natvik, Martin Seneca. 2013. Investment shocks and macroeconomic co-movement. *Journal of Macroeconomics* 37, 208-216. [Crossref]
- 262. Jack Favilukis, Xiaoji Lin. 2013. Long run productivity risk and aggregate investment. *Journal of Monetary Economics* **60**:6, 737-751. [Crossref]
- 263. Kaiji Chen, Zheng Song. 2013. Financial frictions on capital allocation: A transmission mechanism of TFP fluctuations. *Journal of Monetary Economics* **60**:6, 683-703. [Crossref]
- 264. Luisa Lambertini, Caterina Mendicino, Maria Teresa Punzi. 2013. Leaning against boom-bust cycles in credit and housing prices. *Journal of Economic Dynamics and Control* **37**:8, 1500-1522. [Crossref]
- 265. Punnoose Jacob, Gert Peersman. 2013. Dissecting the dynamics of the US trade balance in an estimated equilibrium model. *Journal of International Economics* **90**:2, 302-315. [Crossref]
- 266. Christopher M. Gunn, Alok Johri. 2013. An expectations-driven interpretation of the "Great Recession". *Journal of Monetary Economics* **60**:4, 391-407. [Crossref]
- 267. Stéphane Auray, Paul Gomme, Shen Guo. 2013. Nominal Rigidities, Monetary Policy and Pigou Cycles. *The Economic Journal* **123**:568, 455-473. [Crossref]
- 268. Hajime Tomura. 2013. Heterogeneous beliefs and housing-market boom-bust cycles. Journal of Economic Dynamics and Control 37:4, 735-755. [Crossref]
- 269. Oscar Pavlov, Mark Weder. 2013. Countercyclical markups and news-driven business cycles. *Review* of *Economic Dynamics* 16:2, 371-382. [Crossref]
- 270. Kwang Hwan Kim, Munechika Katayama. 2013. Housing, Wealth Effects, and Monetary Policy. Global Economic Review 42:1, 55-71. [Crossref]

- 271. Koyin Chang, Yoonbai Kim, Marc Tomljanovich, Yung-Hsiang Ying. 2013. Do political parties foster business cycles? An examination of developed economies. *Journal of Comparative Economics* 41:1, 212-226. [Crossref]
- 272. Martin Bodenstein, Luca Guerrieri, Christopher J. Gust. 2013. Oil shocks and the zero bound on nominal interest rates. *Journal of International Money and Finance* **32**, 941-967. [Crossref]
- 273. Bernd Lucke. 2013. Testing the technology interpretation of news shocks. *Applied Economics* 45:1, 1-13. [Crossref]
- 274. Gaetano Gaballo. 2013. Rational Inattention to News: The Perils of Forward Guidance. SSRN Electronic Journal. [Crossref]
- 275. Grzegorz Grabek, Bohdan Klos. 2013. Unemployment in the Estimated New Keynesian SoePL-2012 DSGE Model. SSRN Electronic Journal . [Crossref]
- 276. André Kurmann, Elmar Mertens. 2013. Stock Prices, News, and Economic Fluctuations: Comment. SSRN Electronic Journal . [Crossref]
- 277. Haichao Fan, Zhiwei Xu, Wei Zou. 2013. Firm Dynamics in News Driven Business Cycles: The Role of Endogenous Survival Rate. *SSRN Electronic Journal*. [Crossref]
- 278. Jacek Suda. 2013. Belief Shocks and the Macroeconomy. SSRN Electronic Journal . [Crossref]
- 279. Juha Kilponen, Jouko Vilmunen, Oskari Vahamaa. 2013. Estimating Intertemporal Elasticity of Substitution in a Sticky Price Model. SSRN Electronic Journal . [Crossref]
- 280. Sergio Ocampo DDaz. 2013. Rule-of-Thumb Consumers, Nominal Rigidities and the Design of Interest Rate Rules. *SSRN Electronic Journal*. [Crossref]
- 281. Josef Hollmayr, Christian Matthes. 2013. Learning About Fiscal Policy and the Effects of Policy Uncertainty. SSRN Electronic Journal. [Crossref]
- 282. Edward Herbst, Frank Schorfheide. 2013. Sequential Monte Carlo Sampling for DSGE Models. SSRN Electronic Journal. [Crossref]
- 283. Pascal Terveer. 2013. Are Government Stimulus Packages Really that Harmful? An Analysis of the Underlying Information Structure. *SSRN Electronic Journal*. [Crossref]
- 284. Lance Kent. 2013. Linkages, Transmission, and the Evolution of International Business Cycles. SSRN Electronic Journal. [Crossref]
- 285. Alejandro Justiniano, Giorgio E. Primiceri, Andrea Tambalotti. 2013. The Effects of the Saving and Banking Glut on the U.S. Economy. *SSRN Electronic Journal*. [Crossref]
- 286. Erzo G. J. Luttmer. 2013. The Stolper-Samuelson Effects of a Decline in Aggregate Consumption. SSRN Electronic Journal. [Crossref]
- 287. Gabor Pinter, Konstantinos Theodoridis, Anthony Yates. 2013. Risk News Shocks and the Business Cycle. SSRN Electronic Journal . [Crossref]
- 288. Gabriela Best, Pavel S. Kapinos. 2013. In What Sense Is Monetary Policy Forward-Looking?. SSRN Electronic Journal. [Crossref]
- 289. Paul Beaudry, Franck Portier, Atilim Seymen. 2013. Comparing Two Methods for the Identification of News Shocks. *SSRN Electronic Journal*. [Crossref]
- 290. Albert Queralto. 2013. A Model of Slow Recoveries from Financial Crises. SSRN Electronic Journal . [Crossref]
- 291. Ryo Jinnai. 2013. Innovation, Product Cycle, and Asset Prices. SSRN Electronic Journal . [Crossref]
- 292. Pascal Terveer. 2013. Excess Reserves, Unconventional Monetary Policy and the Consequences for Fiscal Stimulus Packages. *SSRN Electronic Journal*. [Crossref]
- 293. Jun-Hyung Ko, Kensuke Miyazawa, Tuan Khai Vu. 2012. News shocks and Japanese macroeconomic fluctuations. *Japan and the World Economy* 24:4, 292-304. [Crossref]

- 294. R.M. Bidder, M.E. Smith. 2012. Robust animal spirits. *Journal of Monetary Economics* **59**:8, 738-750. [Crossref]
- 295. FABIO MILANI, JOHN TREADWELL. 2012. The Effects of Monetary Policy "News" and "Surprises". Journal of Money, Credit and Banking 44:8, 1667-1692. [Crossref]
- 296. JORDI GALÍ, FRANK SMETS, RAFAEL WOUTERS. 2012. Slow Recoveries: A Structural Interpretation. *Journal of Money, Credit and Banking* 44, 9-30. [Crossref]
- 297. Santanu Roy, Itzhak Zilcha. 2012. Stochastic growth with short-run prediction of shocks. *Economic Theory* 51:3, 539-580. [Crossref]
- 298. Keiichiro Kobayashi, Tomoyuki Nakajima, Masaru Inaba. 2012. COLLATERAL CONSTRAINT AND NEWS-DRIVEN CYCLES. *Macroeconomic Dynamics* 16:5, 752-776. [Crossref]
- 299. Philippe Bacchetta, Eric van Wincoop. Modeling Exchange Rates with Incomplete Information 375-390. [Crossref]
- 300. Leonid Kogan, Dimitris Papanikolaou. 2012. Economic Activity of Firms and Asset Prices. Annual Review of Financial Economics 4:1, 361-384. [Crossref]
- 301. Falko Juessen, Ludger Linnemann. 2012. Markups and fiscal transmission in a panel of OECD countries. *Journal of Macroeconomics* 34:3, 674-686. [Crossref]
- 302. Jang-Ting Guo, Anca-Ioana Sirbu, Richard M.H. Suen. 2012. On expectations-driven business cycles in economies with production externalities: A comment. *International Journal of Economic Theory* 8:3, 313-319. [Crossref]
- 303. Paul R. Bergin, Ching-Yi Lin. 2012. The dynamic effects of a currency union on trade. Journal of International Economics 87:2, 191-204. [Crossref]
- 304. Robert B. Barsky,, Eric R. Sims. 2012. Information, Animal Spirits, and the Meaning of Innovations in Consumer Confidence. *American Economic Review* 102:4, 1343–1377. [Abstract] [View PDF article] [PDF with links]
- 305. Alexandre Dmitriev, Ivan Roberts. 2012. International business cycles with complete markets. Journal of Economic Dynamics and Control 36:6, 862-875. [Crossref]
- 306. Eric M. Leeper,, Alexander W. Richter,, Todd B. Walker. 2012. Quantitative Effects of Fiscal Foresight. American Economic Journal: Economic Policy 4:2, 115-144. [Abstract] [View PDF article] [PDF with links]
- 307. Karel Mertens,, Morten O. Ravn. 2012. Empirical Evidence on the Aggregate Effects of Anticipated and Unanticipated US Tax Policy Shocks. *American Economic Journal: Economic Policy* 4:2, 145-181. [Abstract] [View PDF article] [PDF with links]
- 308. Pengfei Wang, Yi Wen. 2012. Hayashi meets Kiyotaki and Moore: A theory of capital adjustment costs. *Review of Economic Dynamics* 15:2, 207-225. [Crossref]
- 309. PENGFEI WANG. 2012. Understanding Expectation-Driven Fluctuations: A Labor-Market Approach. *Journal of Money, Credit and Banking* 44:2-3, 487-506. [Crossref]
- 310. Knut Are Aastveit, Tørres Trovik. 2012. Nowcasting norwegian GDP: the role of asset prices in a small open economy. *Empirical Economics* 42:1, 95-119. [Crossref]
- 311. Marco M. Sorge. 2012. News shocks or parametric indeterminacy? An observational equivalence result in linear rational expectations models. *Economics Letters* **114**:2, 198-200. [Crossref]
- 312. Jordi Galí, Frank Smets, Rafael Wouters. 2012. Unemployment in an Estimated New Keynesian Model. *NBER Macroeconomics Annual* 26:1, 329-360. [Crossref]
- 313. Fabio Milani. The Modeling of Expectations in Empirical DSGE Models: A Survey 3-38. [Crossref]
- 314. Eric R. Sims. News, Non-Invertibility, and Structural VARs 81-135. [Crossref]

- 315. Fabio Milani, Ashish Rajbhandari. Expectation Formation and Monetary DSGE Models: Beyond the Rational Expectations Paradigm 253-288. [Crossref]
- 316. Luisa Lambertini, Maria Teresa Punzi, Caterina Mendicino. 2012. Expectations-Driven Cycles in the Housing Market. *SSRN Electronic Journal* . [Crossref]
- 317. Felipe Meza, Andres Fernandez. 2012. Labor, Output and Consumption in Business Cycle Models of Emerging Economies. *SSRN Electronic Journal*. [Crossref]
- 318. Jordi Galí, Frank Smets, Rafael Wouters. 2012. Unemployment in an Estimated New Keynesian Model. SSRN Electronic Journal. [Crossref]
- 319. André Kurmann, Christopher Otrok. 2012. News Shocks and the Slope of the Term Structure of Interest Rates. *SSRN Electronic Journal*. [Crossref]
- 320. Edward Herbst. 2012. Using the 'Chandrasekhar Recursions' for Likelihood Evaluation of DSGE Models. SSRN Electronic Journal . [Crossref]
- 321. Jack Favilukis, Xiaoji Lin. 2012. Long Run Productivity Risk and Aggregate Investment. SSRN Electronic Journal. [Crossref]
- 322. Punnoose Jacob, Gert Peersman. 2012. Dissecting the Dynamics of the US Trade Balance in an Estimated Equilibrium Model. SSRN Electronic Journal . [Crossref]
- 323. Frédéric Boissay, Fabrice Collard, Frank Smets. 2012. Booms and Systemic Banking Crises. SSRN Electronic Journal. [Crossref]
- 324. Mario Forni, Luca Gambetti, Sala Luca. 2012. No News in Business Cycles. SSRN Electronic Journal . [Crossref]
- 325. Markus K. Brunnermeier, Yuliy Sannikov. 2012. A Macroeconomic Model with a Financial Sector. SSRN Electronic Journal . [Crossref]
- 326. Marco Battaglini, Levon Barseghyan. 2012. Growth and Fiscal Policy: A Positive Theory. SSRN Electronic Journal. [Crossref]
- 327. Edward Herbst, Frank Schorfheide. 2012. Sequential Monte Carlo Sampling for DSGE Models. SSRN Electronic Journal. [Crossref]
- 328. Olivier Loisel, Aude Pommeret, Franck Portier. 2012. Monetary Policy and Herd Behavior: Leaning Against Bubbles. *SSRN Electronic Journal*. [Crossref]
- 329. Steinar Holden. 2012. Implications of Insights from Behavioral Economics for Macroeconomic Models. SSRN Electronic Journal. [Crossref]
- 330. Ryo Jinnai. 2012. Investment Shocks, Capacity Utilization, and Endogenous Entries. SSRN Electronic Journal . [Crossref]
- 331. Kengo Nutahara. 2012. Note on Nominal Rigidities and News-Driven Business Cycles. *Theoretical Economics Letters* 02:05, 431-434. [Crossref]
- 332. Todd B. Walker, Eric M. Leeper, Shu-Chun S. Yang. 2012. Fiscal Foresight and Information Flows. IMF Working Papers 12:153, i. [Crossref]
- 333. Øistein Harsem, Arne Eide, Knut Heen. 2011. Factors influencing future oil and gas prospects in the Arctic. *Energy Policy* 39:12, 8037-8045. [Crossref]
- 334. Akito Matsumoto, Pietro Cova, Massimiliano Pisani, Alessandro Rebucci. 2011. News shocks and asset price volatility in general equilibrium. *Journal of Economic Dynamics and Control* 35:12, 2132-2149. [Crossref]
- 335. Luigi Marattin, Simone Salotti. 2011. On the usefulness of government spending in the EU area. *The Journal of Socio-Economics* **40**:6, 780-795. [Crossref]
- 336. Stefano Eusepi, Bruce Preston. 2011. Expectations, Learning, and Business Cycle Fluctuations. *American Economic Review* 101:6, 2844-2872. [Abstract] [View PDF article] [PDF with links]

- 337. Nan Li. 2011. Cyclical wage movements in emerging markets compared to developed economies: The role of interest rates. *Review of Economic Dynamics* 14:4, 686-704. [Crossref]
- 338. Emine Boz, Christian Daude, C. Bora Durdu. 2011. Emerging market business cycles: Learning about the trend. *Journal of Monetary Economics* **58**:6-8, 616-631. [Crossref]
- 339. Guido Lorenzoni. 2011. News and Aggregate Demand Shocks. Annual Review of Economics 3:1, 537-557. [Crossref]
- 340. William A. Branch, Bruce McGough. 2011. Business cycle amplification with heterogeneous expectations. *Economic Theory* 47:2-3, 395-421. [Crossref]
- 341. Jordi Galí. 2011. THE RETURN OF THE WAGE PHILLIPS CURVE. Journal of the European Economic Association 9:3, 436-461. [Crossref]
- 342. Wouter J. Den Haan, Matija Lozej. 2011. Pigou Cycles in Closed and Open Economies with Matching Frictions. *NBER International Seminar on Macroeconomics* **7**:1, 193-234. [Crossref]
- 343. Fabio Milani. 2011. Expectation Shocks and Learning as Drivers of the Business Cycle. The Economic Journal 121:552, 379-401. [Crossref]
- 344. Robert B. Barsky, Eric R. Sims. 2011. News shocks and business cycles. *Journal of Monetary Economics* 58:3, 273-289. [Crossref]
- 345. IPPEI FUJIWARA, YASUO HIROSE, MOTOTSUGU SHINTANI. 2011. Can News Be a Major Source of Aggregate Fluctuations? A Bayesian DSGE Approach. *Journal of Money, Credit and Banking* 43:1, 1-29. [Crossref]
- 346. Hashmat Khan, John Tsoukalas. 2011. Investment shocks and the comovement problem. Journal of Economic Dynamics and Control 35:1, 115-130. [Crossref]
- 347. Karel Mertens, Morten O. Ravn. 2011. Understanding the aggregate effects of anticipated and unanticipated tax policy shocks. *Review of Economic Dynamics* 14:1, 27-54. [Crossref]
- 348. Todd B. Walker, Eric M. Leeper. 2011. Information flows and news driven business cycles. *Review* of *Economic Dynamics* 14:1, 55-71. [Crossref]
- 349. Alejandro Justiniano, Giorgio E. Primiceri, Andrea Tambalotti. 2011. Investment shocks and the relative price of investment. *Review of Economic Dynamics* 14:1, 102-121. [Crossref]
- 350. Paul Beaudry, Martial Dupaigne, Franck Portier. 2011. Modeling news-driven international business cycles. *Review of Economic Dynamics* 14:1, 72-91. [Crossref]
- 351. Pengfei Wang, Yi Wen. 2011. Hayashi Meets Kiyotaki and Moore: A Theory of Capital Adjustment Costs. SSRN Electronic Journal . [Crossref]
- 352. Luciana Juvenal, Paulo Santos Monteiro. 2011. Trade and Synchronization in a Multi-Country Economy. SSRN Electronic Journal. [Crossref]
- 353. Elmar Mertens. 2011. Structural Shocks and the Comovements between Output and Interest Rates. SSRN Electronic Journal . [Crossref]
- 354. Luisa Lambertini, Caterina Mendicino, Maria Teresa Punzi. 2011. Leaning Against Boom-Bust Cycles in Credit and Housing Prices. *SSRN Electronic Journal*. [Crossref]
- 355. George-Marios Angeletos, Jennifer La'O. 2011. Decentralization, Communication, and the Origins of Fluctuations. *SSRN Electronic Journal*. [Crossref]
- 356. Jesús Fernández-Villaverde, Juan Francisco Rubio-Ramirez, Pablo Guerron-Quintana. 2011. Supply-Side Policies and the Zero Lower Bound. SSRN Electronic Journal. [Crossref]
- 357. Kaushik Mitra, George W. Evans, Seppo Honkapohja. 2011. Policy Change and Learning in the RBC Model. SSRN Electronic Journal. [Crossref]
- 358. Stefan Avdjiev. 2011. News Driven Business Cycles and Data on Asset Prices in Estimated DSGE Models. SSRN Electronic Journal . [Crossref]

- 359. Philipp Engler. 2011. Monetary Policy and Unemployment in Open Economies. SSRN Electronic Journal. [Crossref]
- 360. Paul Beaudry, Franck Portier. 2011. A Gains from Trade Perspective on Macroeconomic Fluctuations. SSRN Electronic Journal . [Crossref]
- 361. Francesco Furlanetto, Gisle James Natvik, Martin Seneca. 2011. Investment Shocks and Macroeconomic Co-Movement. SSRN Electronic Journal. [Crossref]
- 362. Dimitris Papanikolaou. 2011. Investment Shocks and Asset Prices. SSRN Electronic Journal . [Crossref]
- 363. Alessandro Rebucci, Akito Matsumoto, Pietro Cova, Massimiliano Pisani. 2011. New Shocks and Asset Price Volatility in General Equilibrium. *IMF Working Papers* 11:110, 1. [Crossref]
- 364. CHARLOTTA GROTH, HASHMAT KHAN. 2010. Investment Adjustment Costs: An Empirical Assessment. *Journal of Money, Credit and Banking* **42**:8, 1469–1494. [Crossref]
- 365. L. Grigoriev, A. Ivashchenko. 2010. The Theory of Cycle under the Crisis Blow. *Voprosy Ekonomiki* :10, 31-55. [Crossref]
- 366. Hajime Tomura. 2010. International capital flows and expectation-driven boom-bust cycles in the housing market. *Journal of Economic Dynamics and Control* 34:10, 1993-2009. [Crossref]
- 367. Kwang Hwan Kim. 2010. Is the real price of equipment a good measure for investment-specific technological change?. *Economics Letters* 108:3, 311-313. [Crossref]
- 368. Ferre De Graeve, Maarten Dossche, Marina Emiris, Henri Sneessens, Raf Wouters. 2010. Risk premiums and macroeconomic dynamics in a heterogeneous agent model. *Journal of Economic Dynamics and Control* 34:9, 1680-1699. [Crossref]
- 369. Lilia Karnizova. 2010. The spirit of capitalism and expectation-driven business cycles. *Journal of Monetary Economics* **57**:6, 739-752. [Crossref]
- 370. Elmar Mertens. 2010. Structural shocks and the comovements between output and interest rates. Journal of Economic Dynamics and Control 34:6, 1171-1186. [Crossref]
- 371. Alejandro Justiniano, Giorgio E. Primiceri, Andrea Tambalotti. 2010. Investment shocks and business cycles. *Journal of Monetary Economics* **57**:2, 132-145. [Crossref]
- 372. Jordi Galí. Monetary Policy and Unemployment 487-546. [Crossref]
- 373. George-Marios Angeletos, Jennifer La'O. 2010. Noisy Business Cycles. NBER Macroeconomics Annual 24:1, 319-378. [Crossref]
- 374. Jonas D. M. Fisher. 2010. Comment. NBER Macroeconomics Annual 24:1, 457-474. [Crossref]
- 375. André Kurmann, Christopher Mark Otrok. 2010. News Shocks and the Slope of the Term Structure of Interest Rates. *SSRN Electronic Journal* . [Crossref]
- 376. Sylvain Leduc, Keith Sill. 2010. Expectations and Economic Fluctuations: An Analysis Using Survey Data. *SSRN Electronic Journal*. [Crossref]
- 377. Andrea Raffo. 2010. Technology Shocks: Novel Implications for International Business Cycles. SSRN Electronic Journal. [Crossref]
- 378. Francois Gourio. 2010. Disaster Risk and Business Cycles. SSRN Electronic Journal . [Crossref]
- 379. Francois Gourio, Leena Rudanko. 2010. Customer Capital. SSRN Electronic Journal . [Crossref]
- 380. Ferre De Graeve, Maarten Dossche, Marina Emiris, Henri R. Sneessens, Rafael Wouters. 2010. Risk Premiums and Macroeconomic Dynamics in a Heterogeneous Agent Model. SSRN Electronic Journal . [Crossref]
- 381. Ceyhun Bora Durdu, Ricardo Cavaco Nunes, Horacio Sapriza. 2010. News and Sovereign Default Risk in Small Open Economies. *SSRN Electronic Journal*. [Crossref]

- 382. Luisa Lambertini, Caterina Mendicino, Maria Teresa Punzi. 2010. Expectations-Driven Cycles in the Housing Market. SSRN Electronic Journal. [Crossref]
- 383. Jianjun Miao, Pengfei Wang. 2010. Credit Risk and Business Cycles. SSRN Electronic Journal . [Crossref]
- 384. Martin Bodenstein, Luca Guerrieri, Christopher J. Gust. 2010. Oil Shocks and the Zero Bound on Nominal Interest Rates. SSRN Electronic Journal . [Crossref]
- 385. Francesco Furlanetto, Martin Seneca. 2010. Investment-Specific Technology Shocks and Consumption. SSRN Electronic Journal. [Crossref]
- 386. Pengfei Wang, Jianjun Miao. 2010. Credit Risk and Business Cycles. SSRN Electronic Journal . [Crossref]
- 387. Lorenzoni Guido. 2009. A Theory of Demand Shocks. American Economic Review 99:5, 2050-2084. [Abstract] [View PDF article] [PDF with links]
- 388. Ferre De Graeve, Maarten Dossche, Marina Emiris, Henri R. Sneessens, Rafael Wouters. 2009. Risk Premiums and Macroeconomic Dynamics in a Heterogeneous Agent Model. SSRN Electronic Journal . [Crossref]
- 389. Ivan Jaccard. 2009. Asset Pricing in Home Production Economies. SSRN Electronic Journal . [Crossref]
- 390. Francois Gourio. 2009. Time-Varying Risk of Disaster, Time-Varying Risk Premia, and Macroeconomic Dynamics. SSRN Electronic Journal. [Crossref]
- 391. Max Floetotto, Nir Jaimovich, Seth Pruitt. 2009. Markup Variation and Endogenous Fluctuations in the Price of Investment Goods. *SSRN Electronic Journal*. [Crossref]
- 392. Christoph G. Görtz. 2009. Expectations Driven Business Cycles Featuring Growth Asymmetries. SSRN Electronic Journal. [Crossref]
- 393. Karl Walentin. 2009. Expectation Driven Business Cycles with Limited Enforcement. SSRN Electronic Journal. [Crossref]
- 394. Stefano Eusepi, Bruce J. Preston. 2009. Labor Supply Heterogeneity and Macroeconomic Comovement. SSRN Electronic Journal. [Crossref]
- 395. Alejandro Justiniano, Giorgio E. Primiceri, Andrea Tambalotti. 2009. Investment Shocks and the Relative Price of Investment. *SSRN Electronic Journal*. [Crossref]
- 396. Jonas D. M. Fisher. 2009. Comment on 'Letting Different Views About Business Cycles Compete'. SSRN Electronic Journal. [Crossref]
- 397. Rui A. Albuquerque, Jianjun Miao. 2008. Advance Information and Asset Prices. SSRN Electronic Journal . [Crossref]
- 398. Eric M. Leeper, Todd B. Walker, Shu-Chun S. Yang. 2008. Fiscal Foresight: Analytics and Econometrics. SSRN Electronic Journal. [Crossref]
- 399. Ivan Jaccard. 2007. Asset Pricing, Habit Memory, and the Labor Market. SSRN Electronic Journal . [Crossref]